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We use a polarimetric camera to record the Stokes parameters and the degree of linear polarization of
long-wavelength infrared radiation emitted by human faces. These Stokes images are combined with
Fresnel relations to extract the surface normal at each pixel. Integrating over these surface normals
yields a three-dimensional facial image. One major difficulty of this technique is that the normal vectors
determined from the polarizations are not unique. We overcome this problem by introducing an addi-
tional boundary condition on the subject. The major sources of error in producing inversions are noise
in the images caused by scattering of the background signal and the ambiguity in determining the surface
normals from the Fresnel coefficients. © 2014 Optical Society of America
OCIS codes: (110.6820) Thermal imaging; (110.6880) Three-dimensional image acquisition;

(260.5430) Polarization.
http://dx.doi.org/10.1364/AO.53.008514

1. Introduction

Long-wavelength infrared (LWIR) imaging has many
practical applications. Since it is a measure of the
signal emitted by an object, it is a passive tool that
does not require an additional light source. One ma-
jor disadvantage of LWIR imaging is the lack of
contrast. Images of people tend to look washed out
and ghostlike, and it is difficult to obtain information
from them. Incorporating polarization informa-
tion can provide additional discriminating informa-
tion that can enhance the contrast of images, making
their features more identifiable [1].

In this manuscript, we describe efforts to expand
the capabilities of LWIR polarimetric imaging by
extracting three-dimensional (3D) images. We dem-
onstrate the capabilities by generating 3D images
of human faces reconstructed from single Stokes-vec-
tor images. We use human faces because they have a
complex morphology with both concave and convex
regions that are especially challenging to analyze.

In addition, they have applications in facial recogni-
tion. To avoid a possible source of confusion, we refer
to an image that contains the depth and shape
information as a “3D image.” However, technically
speaking, this image is a two-dimensional surface
map f �x; y� of the subject’s face.

In the context of defense and security applications,
e.g., nighttime/daytime surveillance and facial recog-
nition, our method offers a number of advantages
over methods that use visible light. Perhaps the old-
est and the best-known of these methods is the
shape-from-shading method [2,3]. In this method,
a digital camera is used to capture an intensity im-
age of the subject’s face, and the gradual variation of
shading in the image is used to obtain f �x; y�. Un-
fortunately, to use this method one has to know
the reflectivity map (bidirectional reflectance distri-
bution function) and the position of the light source
(s). Moreover, it requires precise illumination condi-
tions and may yield unreliable results if these condi-
tions are not strictly satisfied [3,4]. Recently, the
polarization state of visible light specularly and/or
diffusely reflected from a smooth dielectric object
has been used to obtain a 3D image of an object
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[5–9]. These shape-from-polarization methods re-
quire one or more strategically placed illumination
sources and are sensitive to the illumination condi-
tions. Furthermore, some of these methods [7,9] re-
quire two views of the object, which may be difficult
to achieve in defense and security applications. Our
method requires only a single view of the subject and
does not require any illumination sources. Thus, it is
a passive method that is better suited for surveil-
lance applications.

We note that this method may also have medical
applications. Since the end of the Cold War, the
transfer of U.S. Military infrared imaging technology
to the public medical sector has resulted in a number
of new diagnostic techniques in medicine [10]. For ex-
ample, infrared imaging has been used to treat and/
or diagnose vascular disorders, breast cancer, derma-
tological disorders, and diabetes [10–14]. We specu-
late that the polarization state of emitted LWIR
radiation contains additional information that may
be of value to medical practitioners. For example,
a rapid 3D modeling of body parts may be of use
during surgery.

2. Image Acquisition

We record the polarization state of the totalwave em-
anating from the face using a polarimetric camera
equipped with a Stirling-cooled mercury cadmium
telluride focal-plane array of 640 × 480 pixels. The
array has a spectral response range of 7.5–11.1 μm
[1]. A sequence of 32-bit images is recorded at a
frame rate of 120 Hz, and a Fourier modulation tech-
nique [15] is applied to them to obtain the Stokes
parameters �S0; S1; S2; S3� and the degree of linear
polarization (DoLP) for each pixel of the array. From
this image vector, we obtain the surface normal N on
a pixel-by-pixel basis that we then integrate to obtain
the surface f �x; y�. We note that the Stokes parame-
ters cannot be measured directly and are inferred
from six independent intensity measurements [1].
Therefore, at a frame rate of 120 Hz, the subject must
remain stationary for approximately 6

120 � 50 ms.
The recorded images contain both reflected and
emitted waves. As a consequence of the Fresnel
equations, the emitted waves are polarized parallel
to the plane of emission, which is defined by the line
of sight of the camera and the surface normal N. In
contrast, reflected waves are polarized perpendicular
to this plane. In other words, the emitted and the
reflected polarization states are orthogonal. For
human subjects in common indoor conditions, we
find that the emitted radiation dominates, and the
reflected radiation contribution to the polarization
state may be disregarded. This is not unexpected,
as less than 10% of the infrared radiation is specu-
larly reflected by the skin [14]. Furthermore, we
assume that the subject’s face is sufficiently
warmer than the ambient environment, and that
the environment is devoid of strong LWIR radiation
sources.

3. Properties and Parameters of the Skin

To a first-order approximation, a macroscopic body at
temperature T emits electromagnetic radiation in a
manner proportional to Planck’s radiation law.
Namely, the distribution of the emitted energy
density in an infinitesimal interval dω depends on
temperature via

u�ω; T�dω � ℏω3

π2c3
h
exp

�
ℏω
kBT

�
− 1

idω; (1)

where ω is the angular frequency, and c, ℏ, kB are
known constants. Humans, being homeotherms,
can maintain core body temperature at a nearly con-
stant 37°C. However, the skin surface temperature is
not constant, and it depends on the surrounding
environment as well as the blood flow underneath
the outer layer of the skin. For example, the temper-
ature of buttock skin exposed to direct sunlight is
≈40°C [16], and the surface temperature of forehead
and toes under room conditions is ≈34°C and ≈27°C,
respectively [10]. From Eq. (1) and the above temper-
ature data, it follows that ≈90% of the emitted radi-
ation by humans is in the 6–14 μmwavelength range
with amean peak between 9 and 10 μm [10,11]. Thus,
our polarimetric camera with a spectral response
range of 7.5–11.1 μm is well suited for measuring
the radiation emitted by human skin.

To utilize the polarizing LWIR properties to ex-
tract 3D information, we require a numerical value
for the complex index of refraction n of the skin.
Unfortunately, this value is not constant, and it tends
to have a spatial and an environmental dependence
[10,11,14,17,18]. In order to establish a reasonable
value for n, we briefly review the composition of
human skin.

Human skin consists of an outer layer called an ep-
idermis and a dermis layer on which the epidermis
layer rests. The epidermis layer can be further par-
titioned into a thin (≈10–20 μm) nonliving layer and
a thick (≈100–200 μm) living layer [13,14,19]. The
thickness of the living layer is nonuniform, and
the interface between the epidermis layer and the
dermis layer contains many nonplanar folds (see
Fig. 1(a) in [13]). The dermis layer contains a net-
work of blood capillaries, and these capillaries lose
thermal energy to the epidermis layer, which in turn
radiates the thermal energy to the surrounding envi-
ronment [10,19]. From the above discussion it follows
that human skin is highly variable and complex.
For our purposes, we consider its characterization
through an effective refractive index that we con-
sider to be constant over the body. The real part of
this effective n is between 1.4 and 1.6, and the imagi-
nary part is between 0.01 and 0.03 [12,14,20–22].

4. From Polarization State to 3D Image

When thermal radiation is emitted by a hot body
having an optically smooth surface, the emitted
waves become partially linearly polarized [23–25].
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Let us consider thermal radiation emanating from a
large planar surface with directional spectral emis-
sivity εp, absorptivity αp, and reflectivity rp. From
the Kirchhoff radiation law, it is known that these
three quantities are related via

εp�θ;ϕ� � αp�θ;ϕ� � 1 − rp�θ;ϕ�; (2)

where θ is the angle between N and the camera’s line
of sight, ϕ is the azimuthal angle, and the polariza-
tion state with respect to the plane of emission is de-
noted by the subscript p � ⊥ or ‖ (⊥ for perpendicular
and ‖ for parallel). For brevity, in Eq. (2) we have sup-
pressed the functional dependence of εp, αp, and rp on
temperature and wavelength. Substituting Eq. (2)
into the definition of DoLP,

P�θ� � ε∥�θ� − ε⊥�θ�
ε∥�θ� � ε⊥�θ�

; (3)

and using the Fresnel reflection coefficients for
perpendicular and parallel polarization states, we
obtain the DoLP as a function of θ [23], i.e.,

P�θ� � �1 − jr∥�θ�j2� − �1 − jr⊥�θ�j2�
�1 − jr∥�θ�j2� � �1 − jr⊥�θ�j2�

; (4a)

where

r∥�θ� �
n2 cos θ −

������������������������
n2 − sin2 θ

p

n2 cos θ�
������������������������
n2 − sin2 θ

p ; (4b)

r⊥�θ� �
cos θ −

������������������������
n2 − sin2 θ

p

cos θ�
������������������������
n2 − sin2 θ

p : (4c)

Notice that P�θ� does not explicitly depend on the azi-
muthal angle ϕ because the polarization state of the
emitted radiation has been decomposed into its par-
allel and perpendicular components. If we partition
the human face surface into planar facets and neglect
possible multiple reflections of the emitted radiation,
then we can obtain θ. Equating Eq. (4) to the exper-
imentally measured DoLP and then numerically
solving for θ yields a value for θ on a pixel-by-pixel
basis. Notice that by neglecting possible multiple re-
flections of the emitted radiation we are essentially
treating f �x; y� as a convex surface, which, clearly, a
human face is not. In other words, the above method
may produce inaccurate θs for concave portions of the
face, e.g., eye sockets.

The normal to the surface is given by

N � −
∂
∂x

f �x; y�x̂ − ∂
∂y

f �x; y�ŷ� ẑ; (5a)

where from simple geometric considerations it
follows that

−
∂
∂x

f �x; y� � tan θ cos ϕ (5b)

and

−
∂
∂y

f �x; y� � tan θ sin ϕ: (5c)

The unknown angle ϕ in Eq. (5) can be obtained for
each facet directly from the experimentally mea-
sured Stokes parameters [26], i.e.,

ϕ � ψ � �0 or π�; (6a)

where

ψ � 1
2

8>>>>>>>><
>>>>>>>>:

arctan
�
S2
S1

�
� π

2 ; S1 ≤ 0;

arctan
�
S2
S1

�
� π; S1 > 0 and S2 < S1;

arctan
�
S2
S1

�
� 0; S1 > 0 and S2 ≥ S1:

(6b)

Notice that Eq. (6a) only determines ϕ up to a π am-
biguity because the Stokes parameters are invariant
under a rotation of π. Such an ambiguity constitutes
an additional unknown in the mathematical solu-
tion. To resolve this ambiguity, we must introduce
an additional boundary condition to find a solution.
The boundary condition we employ for human faces
is that the surface normal must point away from the
subject’s head on the occluding boundary. In other
words, we set ϕ to ψ or ψ � π on the occluding boun-
dary so that the normal N satisfies the above require-
ment. Such a boundary condition is valid for human
faces. After ϕ is chosen on the occluding boundary, we
choose ϕ for the neighboring pixels in such a way that
the normal for these pixels points in the same direc-
tion as the normal on the occluding boundary. This
process is iteratively continued for all remaining
ambiguous ϕs for which the corresponding θ is larger
than some threshold. The ϕs for which the corre-
sponding θ is smaller than the threshold are left un-
changed because these facets are only slightly tilted
with respect to the line of sight of the camera. We
note that this additional boundary condition may
not be valid for all objects.

A number of methods are available to integrate N
and obtain f �x; y� up to an additive constant; e.g., see
[27–32]. For its simplicity and robustness to noise,
we chose to use the well-known Frankot–Chellapa
method [27]. Recall that the Frankot–Chellapa
method enforces the integrability condition,
∇ × N � 0, for all points on the support of f �x; y�,
and, thus, it smoothes the surface normal. This is
beneficial because the surface of a human face
may have discontinuities.
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5. Results

All of the measurements presented in this section
were taken in an air-conditioned laboratory where
the temperatures were significantly lower (≲21°C)

than the subjects under investigation. This is impor-
tant because LWIR fields from the background can
scatter off the subject. The resulting image measured
by the camera is a superposition of this noise field

Fig. 1. Intensity and polarization imagery of Subject A.
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scattered from the background with the signal field
emitted by the subject. In general, the scattered ra-
diation has a different polarization state than the
emission, resulting in errors in subsequent inver-
sions. The Stokes-vector images (S0, S1, S2) and
the DoLP image recorded by the polarimetric camera
of two subjects are shown in Figs. 1 and 2. The inten-
sity S0 images correlate to the temperature of the ob-
ject and also to their emissivities. Perhaps most

significant in remote-sensing applications is how lit-
tle information can be obtained directly from these
images; i.e., the facial features of the different sub-
jects have different behaviors. For instance, the
eye sockets of Subject A are significantly brighter
and warmer than the rest of the face, but this char-
acteristic is not present in Subject B. The ears of Sub-
ject A appear colder than the rest of the face, whereas
they are relatively warm in Subject B. Because of

Fig. 2. Intensity and polarization imagery of Subject B.
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these inherent behavioral differences it is difficult to
identify specific features of a face. Both intensity S0
images appear splotchy and washed out, lacking in
definition and texture that is seen in the DoLP im-
age. This is not surprising because S0 images are
a measure of the total signal and do not contain po-
larimetric information that is sensitive to subtle
changes in the skin texture and especially the orien-
tation [1].

Clearly, the value of the θ threshold (see Section 4)
depends on the index of refraction of the skin. This
value may be estimated by plotting P�θ� for a number
of different refractive indices of the skin. From Fig. 3,
we see that P�θ ≲ 10°� ≈ 0 and the P�θ� curves do not
differ appreciably for θ ≲ 10°. Furthermore, from
Fig. 3 we see that the curved parts of the face will
tend to stretch as n decreases. Fortunately, this effect
is not very pronounced because the range of the index
of refraction of the skin is rather narrow (see Sec-
tion 3). For the results presented below, we used
θthreshold � 11° and n � 1.5� 0.03i.

In Fig. 4 contour plots of ϕ derived from the S1 and
S2 images are shown. Although there are some parts
near the eyes and the mouth where the algorithm
described in Section 4 does not properly resolve the

π ambiguity, overall, the algorithm performed very
well. Finally, 3D images of the subjects are shown
in Figs. 5 and 6 (also, see Media 1 and Media 2).
To enhance the visual perception of the surface in
these figures, we use the grayscale DoLP image as
a texture map for the surface. From the figures we
see that the main features of the face are faithfully
reconstructed. However, the eyebrow region and
some aspects of the eye sockets appear to be some-
what deformed. This is expected as the eyebrow hair

Fig. 3. Degree of linear polarization as a function of θ is shown for
three refractive indices.
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Fig. 4. Contour plots of ϕ (in degrees).

Fig. 5. 3D image of Subject A (see Media 1).

Fig. 6. 3D image of Subject B (see Media 2).
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effectively causes the surface to be discontinuous.
Furthermore, the indentations and arches near the
eye region may produce multiple reflections of the
emitted radiation, which we do not take into account
in our method.

6. Conclusions

In this manuscript, we demonstrate that a 3D image
of a human face may be obtained from a single
Stokes-vector image of the emitted LWIR radiation.
To do this, we analyze the polarization state of
the emitted radiation to obtain the surface normal
N. Then, by integrating N, we obtain the surface
f �x; y� up to an additive constant. For the integration,
we use the well-known Frankot–Chellapa method
[27], which requires unambiguous knowledge of
the azimuthal angle ϕ. One shortcoming of this
method is that the retrieved surface normals are
nonunique. To address this problem, our method of
producing an unambiguous ϕ relies on the occluding
boundary. Unfortunately, this is precise only for a
surface containing no concavities. The face repre-
sents a complex surface, and there are problematic
regions in which this algorithm can be improved.
It seems reasonable to conjecture that using a more
sophisticated integration method, such as one used
by Ecker et al. (2008) [29], which allows for a twofold
ambiguity in ϕ, would further improve the fidelity
of f �x; y�. We will consider this conjecture in
future work.

While the methodology we have described should
encounter no difficulties in a surface having no con-
cavities, and has been demonstrated to be successful
for complex surfaces that are smoothly varying but
contain concavities, like a face, challenges may occur
in other systems. Objects that have discontinuities in
surface slopes due to sharp edges, for instance, can
present a challenge that is not addressed by the
current methodology.
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