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The near-field electromagnetic scattering intensity resonances are redshifted in frequency with respect to their
far-field counterparts. We derive simple, approximate, analytical formulas for this shift in the case of a plane wave
interacting with a dielectric sphere. Numerical results comparing the approximate formulas to the numerically
exact solutions show that the two are in good agreement. We also consider the Rayleigh limit of the formulas to

gain more insight into the phenomenon.
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1. INTRODUCTION

With recent technological advances it has become possible to
control light at the nanoscale through the use of nanoparticles
and nanostructures, e.g., see [1] and references therein. At this
scale, quantities of interest are related to the near-field intensity
as opposed to the conventional far-field quantities, such as the
scattering and absorption cross sections, or far-field intensities.
In metallic particles, localized surface plasmon resonances allow
for subwavelength confinement of an incident electromagnetic
wave and for large enhancement of the field near the surface of
the nanoparticle. These properties are particularly important
from an applied perspective as they are utilized in many differ-
ent application arenas such as biosensing [2], surface-enhanced
Raman spectroscopy [3], and nanometric optical trapping [4].
One especially relevant application is designing and tuning
nanoparticle resonances to be used as sources or detectors. If
the nanoparticle system is designed using far-field solutions,
the resulting device that is used in the near field will not be
optimized.

Recently, a redshift of the near-field intensity peaks with
respect to the intensity peaks in the far field has attracted
attention [5-10]. In principle, a qualitative understanding
and a quantitative prediction of this redshift would allow for
an optimization of the near fields based on their far-field coun-
terparts, which are generally easier to measure. On the concep-
tual front, the redshift of metallic particles has been explained
in terms of a damped harmonic oscillator model, where the
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maximum of the kinetic and dissipation energies occur at
the natural frequency of the oscillator, but the maximum of
the potential energy occurs at a lower frequency due to a non-
zero damping constant [5—7]. If we associate the far-field cross
sections with the kinetic and dissipation energies and the near-
field intensity with the potential energy (x amplitude), then
we see how the oscillator model qualitatively explains the origin
of the redshift in highly absorbent nanoparticles. It has been
noted by Chen ez a/. [5] that the damping may not be the only
factor causing the redshift. In fact, Moreno ez al. [9] recently
demonstrated that evanescent waves contribute to the redshift
of metallic particles. This suggests that the redshift also will
occur in the light scattered by dielectric nanoparticles because
an incident wave may excite the internal resonances of the
particle, thereby generating the evanescent waves emanating
from the surface of the particle [11]. We use this physical in-
sight to derive relatively simple analytical formulas for the red-
shift between the far- and the near-field intensity peaks of the
light scattered by a dielectric sphere. These formulas not only
accurately predict the redshift, but also offer further physical
insight into the phenomenon by explicitly showing the depend-
ence of the redshift on the physical parameters of the system.
It should be noted that high permittivity dielectric nanopar-
ticles, e.g., silicon spheres, are of current research interest
because they can have strong resonances over different spectral
regions, which can be desirable for varied applications, e.g.,
dielectric metamaterials [12—14].
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Table 1. Brief Description of the Symbols Used
Throughout the Paper

Symbol Description

T Spherical Bessel function of the 1st kind
s Spherical Bessel function of the 2nd kind
b, Spherical Hankel function of the 1st kind

Riccati—Bessel function
Riccati—Bessel function
Riccati—Bessel function

w,(n) = nj,(n)
200 = -ny,,(1)
n(n) = nh,(n)

ry Associated Legendre polynomial with the
Condon-Shortley phase

¢ Speed of light in vacuum

€ Permittivity of the host space (Region 1)

€ Permittivity of the sphere (Region 2)

ky = Jer® Wavenumber in Region 1

ky = Je;2 Wavenumber in Region 2

Throughout this paper, we use the Gaussian unit system and
assume that all fields are harmonic in time with a exp(-iwz)
time factor, where @ is the angular frequency. For simplicity
we assume that the scatterer and the host space have the same
permeability. Furthermore, for the reader’s convenience a par-
tial list of the symbols used in the paper is presented in Table 1.

2. REDSHIFT FORMULA

If a monochromatic plane wave of unit amplitude propagating
in the Z-direction and polarized in the X-direction is incident on
a sphere of radius p, then the scattered partial-wave electric field
is given by
E(:0.) =L PAM, BN, ()
n(n+1)

where

1 A
M, = = b, ()P, (cos ) cos 90
sin

-h (17) P1 1(cos ) sin ¢, (1b)

N,, = @hn(ml’}i(cos 0) cos ¢t

+ 1d [ﬂ/ﬂn(ﬂ)]digl’;(cos 0) cos ¢O

ndn
1 d
57 sin Ody

— [, ()P} (cos 6) sin pgb, (1c)

and 17 = k7, where 7 is the radial distance and #; is the wave-
number in Region 1, € is the polar angle, and ¢ is the azimuthal
angle. In Eq. (1a), the partial scattering amplitudes are given by

b,
b-id, @

n n

A,=-—"— and B,=-

where

k
a, = 2w, (kP (kap) ~ i (kip)y (kap), (2D)
1

k
¢, = k—zxn(/elp)w;(/ezp) - 2a(kip)y,(kop),  (20)
1

ky
b, —wn(klp)wn(/ezp)— wn(/elp)wn(/ezp) (2d)

d, —xn(/w))wn(/ezﬂ)- xn(/elp)wn(kzﬂ) (2e)

and the prime denotes differentlatlon with respect to the argu-
ment. If we define the angularly integrated scattered intensity as

I (w,r) = /0 ” /0 "E,(r,0,¢)  E:(r,60,$)sin 6d0dg, (3)

where * denotes the complex conjugate, then by substituting
Eq. (1) into Eq. (3), and using the orthogonality properties
of M;,, and N,,, we obtain

I(w,7) = ’27—72[[ W@, 7), (4a)
where
L(w,7) = |A,(0)gM (@, 7) + |B,(0) g5 (@, 7),  (4b)
= 2n+ Di?lh,m)]% (4c)
and

g = ((n+ Db+ nlh, (). (4d)
From here on we choose to work with the normalized intensity
1,(w, r) instead of /,(w, r) because the normalized intensity
I,(w, ) reduces to a convenient form in the far field; namely,

I(w) = 2n+ 1D (4,(@)* +[B,(@)*), n>1, (5a)

where
a, b,
AP =S amd BT ()

With this normalization, the far-field intensity does not depend
on the radial distance  and thus, the far-field intensity reso-
nances are also independent of 7. Of course, we have obtained
Eq. (5) from Eq. (4) by simply using the asymptotic form of the
spherical Hankel functions.

From Eq. (1), we see that the 4, (B,) coefficients are the
amplitudes of oscillations of the magnetic (electric) type.
Analogously, we say that a far-field resonance is of the magnetic
or electric type if A, or B, are maximum. Let us denote these
magnetic (electric) resonant frequencies by @} (@) and their
near-field counterparts by @} (@%). Here the subscript £ =
1,2, ... is simply used to label each resonant frequency and
does not imply any particular ordering. To find @}, we require
the derivative of |4,,|? with respect to @ to vanish, which yields

_ 0 _ 0 da, de,
a, =0, c, =0, or da) +and
From the functional form of |4,,|* given in Eq. (5b), we see that
the maximum occurs whenever ¢, = 0. In other words, w}' are
the solutions to the transcendental equation ¢, = 0. Similarly,
% are the solutions to the transcendental equation &, = 0.
We may consider the magnetic and the electric type resonances
separately because ¢, and d,, coefficients do not vanish simul-
taneously. Thus, it is convenient to decompose the total scat-
tered intensity [Egs. (4)] into its magnetic and electric
contribution; namely, /,(w, r) = I} (w, r) + I5,(w, r), where

~=10. (6)
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INw, 1) = A, (o)) (o 7), (7a)

I, 7) = |B,(0)]g; (@, 7). (7b)

While this provides a convenience in description, we note that
this expression may not be practical for applications, as the
location of a particular resonance may appear shifted due to
the presence of the additional modes. In practice, this effect
can be reduced or eliminated by illuminating or detecting only
the polarization component of the resonance of interest.
Furthermore, from Eq. (4d) we see that ¢¢_, (@, r)/k? scales
as 1/4$ and, thus, Eq. (7b) is in agreement with the universal

incident wavelength dependence predicted by Moreno
et al. [9].

3. ELECTRIC REDSHIFT FORMULAS

The redshift formula for the electric or magnetic resonances
may be derived by exploiting a particular functional form of
the partial scattering amplitudes, as shown in Appendix A.
In the case of the electric redshift, we let wy = @, A = b,
B=4d, and ¢ = ¢ in Eq. (A2) to obtain

18,(@5 1) {Mw%)
28,051 14, ()

where the overdot - denotes differentiation with respect to .
The redshift formula [Eq. (8)] allows us to rapidly and accu-
rately calculate how the far-field electric intensity resonances
depend on radial distance 7. To demonstrate the accuracy of
Eq. (8) we have listed the relative error associated with it in
Table 2. In the table we have identified the far-field resonant
frequencies using the unitless electric size parameter x¢ instead
of w$, i.e., x5 = V1P /¢, and evaluated the near-field res-
onance @5(r) on the surface of the sphere » = p. Furthermore,
to demonstrate how the relative error depends on radial
distance, we have plotted the relative error as a function of
the scaled radial distance for a number of worst-case scenario
resonances in Fig. 1. From these data we see that the relative
error is generally very small and tends to decrease with radial

AwS(r) = d5(r) - 05 =

2
}, @)

Table 2. Relative Errors Associated with Using Eq. (8) for
a Sphere with a Dielectric Constant of 10

n 4 x5 Rel. Error in %
1 1 0.44404161231126 3.40 x 1072
1 2 0.76111381942357 9.14 x 107!
1 3 1.0730776730363 4.45

1 4 1.3888710632302 5.07

1 5 1.7085740733775 2.12

1 6 2.0284063829955 6.33 x 107!
1 7 2.3472206484602 1.66 x 107!
1 8 2.6652685984771 1.99 x 1072
1 9 2.9830223110202 3.88 x 1072
2 10 0.57329872365611 2.89 x 107
2 11 0.90414933943808 2.59x 1073
2 12 1.2237952354462 4.89 x 1072
2 13 1.5386833689535 3.99 x 107!
2 14 1.8515469192830 1.61

2 15 2.1657001377980 3.07

2 16 2.4832719779298 2.73

2 17 2.8029458320520 1.41
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Fig. 1. Relative error associated with the redshift formula [Eq. (8)]
is shown as a function of the scaled radial distance for several resonan-
ces listed in Table 2.

distance. This is expected behavior as the redshift should in-
crease near the surface of the particle, where the evanescent
wave contribution is greatest (see Fig. 2).

To gain further insight into Eq. (8), we consider the
Rayleigh limit. Namely, substituting

() = 3 s+ O), (©a)
1 x 1 3 5
71(%) = =+ - --x° + O(x°), (9b)
x 2 8
and
Vi) = Sx -+ O0), (9c)
iy — L1 3, 4
21(6) = -5 45 - 0¥ + 06, (9d)
into Egs. (2d) and (2¢) yields
b~y - a), (10a)

9

. 4 2
dlz—me—z) +9("—2) +10}, (10b)
15(1) X1 X1
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o
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Fig. 2. Scaled redshift Ax is plotted as a function of the scaled

radial distance for several resonances listed in Table 2.
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where x| = \/€1pw/c and x, = /e;pw/c. Using the sum of
squares formula for the spherical Bessel functions ([15],

Section 10.49(iv))

. "~ Sy(n)
VHORSAOED W == (11a)
p=0
where
@p)ln+p)! _
S,(n) = {gf@!)%w)v i _ 2) Lown (11b)

to rewrite Eq. (4d) as

M+ 1)S,(n-1 nS,(n+1
o =3 DR DEEED g

=0

and then substituting Eqs. (10) and (12) into Eq. (8) finally
yields the desired formula:

’+6 10x; )2
AwS |~ - 4’7 t 5 ul 5| @5, (13a)
’ n* + 1+ 3 \3x; + 30x7

when {x|,x,} <1 and x; # x,. The negative sign on the
right-hand side of Eq. (13a) confirms that the near-field inten-
sity peaks are indeed redshifted with respect to their far-field
counterparts. We also see that Awj,,_, is inversely propor-
tional to the fourth power of the refractive index of the sphere
if x, > x;. Furthermore, we note that the higher order redshifts
can be derived in an analogous manner; for example, the quad-
rupole redshift is given by

. 3(n* + 121 4 90) ( 7x) )2 .

A ~ - .
e 7% + 3n* + 18n% + 90 \30x3 + 105x7 @e
(13b)
4. MAGNETIC REDSHIFT FORMULAS
Proceeding analogously to Section 3, we obtain
_ 1g, (@7, 7) |a,(@f) ] *
AwP(r) = @p(r) - op RS2 12 s (14)
4 4 4 2g0 (0P, r) [ (@F

Table 3. Relative Errors Associated with Using Eq. (14)
for a Sphere with a Dielectric Constant of 10

n 4 x5 Rel. Error in %
1 1 0.31130447515856 7.94 x 1073
1 2 0.62398570479241 6.50 x 1072
1 3 0.93834713028058 1.54x 107!
1 4 1.2540335431079 2.42 x 107!
1 5 1.5707963267949 3.53x 107!
1 6 1.8889337144859 5.93 x 107!
1 7 2.2102197037432 1.48

2 8 0.44775047977432 2.55x 107
2 9 0.76961156442652 1.21 x 1073
2 10 1.0862284580243 1.09 x 1072
2 11 1.4015575650554 4.14 x 1072
2 12 1.7168078189283 9.43 x 1072
2 13 2.0324277448812 1.61 x 107!
2 14 2.3485738549284 2.44 x 107!
2 15 2.6653903766980 3.72 x 107!
2 16 2.9832885136309 6.52 x 107!

04

e <
o w
— T

Relative Error (in %)
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T
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Fig. 3. Relative error associated with the redshift formula [Eq. (14)]
is shown as a function of the scaled radial distance for several resonan-

ces listed in Table 3.

which is the redshift formula for the magnetic resonances. As in
Section 3, we tabulate the relative error associated with Eq. (14)
when 7 = p and plot the relative error as a function of the
scaled radial distance for several resonances; see Table 3 and
Fig. 3, respectively. By comparing Table 2 and Fig. 1 with
Table 3 and Fig. 3, respectively, we see that the relative error
is generally smaller for the magnetic case than the electric case.
This is expected as the associated redshift is also smaller in the
magnetic case; see Figs. 2 and 4. Furthermore, by comparing

6
X
Ao? _ ~-— L gm 15a
a)f}n:l 225(’72 + 1)(Uf ( )
and
2 4 6)xl0
I SN et S (15b)

T 33075( 4+ 32 +9) ¢

to Egs. (13a) and (13b), respectively, we see that, in the
Rayleigh limit, the magnetic dipole and quadrupole redshifts
are much smaller than their electric counterparts. Of course,
if we consider the magnetic intensity instead of the electric in-
tensity, then the situation would be reversed because the role of
A, and B, are reversed, as well.

—

Fig. 4. Scaled redshift Ax% is plotted as a function of the scaled

radial distance for several resonances listed in Table 3.
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5. CONCLUSIONS

We have developed approximate formulas for predicting the
redshift between the near-field electric intensity peaks and their
far-field counterparts. These formulas were derived for a plane
wave scattering from a dielectric sphere. Through numerical
examples we have demonstrated that these formulas accurately
predict the redshift. Furthermore, we considered the Rayleigh
limit of the formulas and deduced that the redshifts associated
with the magnetic resonances are orders of magnitude smaller
than their electric counterparts.

Recently it was demonstrated that the resonances in weakly
lossy dielectric particles are only slightly affected by the losses
[16]. Although our approach is valid only for ideal dielectric
scatterers, we speculate that it may be possible to extend it to
weakly absorbing scatterers by expanding the Riccati—Bessel
functions in the small absorption parameter, as was done in
[17]. The benefit of such an expansion is that we will approx-
imately retain the functional form of the absolute value squared
of the partial scattering amplitudes, and, therefore, we will be
able to build on the derivation presented in this paper. We will
further discuss this possibility in the future.

APPENDIX A: NEAR- AND FAR-FIELD PEAKS

If a function of the form

A2
[(Cl), 7’) =W(g(@ 7’), (A1a)
where
‘M <1 and ]B%EiIB%, (A1b)
B(wy) dw

has a local maximum in the far-field, » > 1, at @ = @y, and
B(wy) = 0, then /(w, r) has a near-field maximum that is
shifted with respect to the far-field maximum by

1g(wo, 7) (A 2
Aw(r) ~LE@0 D) (ﬂ) . (A2)
2g(wo, 1) \B(wy)
To derive Eq. (A2), we first expand (@, ) in Taylor series
around @, i.e.,
. 1.

I(Aw, r) = L(wy, r) + [(wy, 7)Aw + El(a)o, r)Aw?, (A3)
and then maximize Eq. (A3) with respect to A to obtain
I(wy, 7)
Hwy, 7)

Through a straightforward but tedious exercise in differentia-
tion, we also have

Aw(r) = - (A4)

I (g, ) = g(wy, 1) (A5a)

and

0 2
B(“"))) . (A5b)

Ly, r) = g(wq, 7) - 2wy, 7) ( Awy)
Substituting Eq. (A5) into Eq. (A4) and expanding the result in
a formal power series in the small parameter A(w)/B(wy)
yields Eq. (A2). Note that to obtain Eq. (A2) we retained only
the first term in the power series.
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