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The ability to infer near-field scattering properties from far-field measurements is of paramount importance in
nano-optics. Recently we derived an approximate formula for predicting the frequency shift between near- and
far-field intensity peaks in the case of a dielectric sphere. In this work we demonstrate that almost an identical
formula can be used to predict the resonance shift of a dielectric cylinder and a perfectly conducting cylinder. We
find the redshift of the resonance peak of the perfect electric conducting cylinder to be approximately 2 orders of
magnitude greater than for the dielectric cylinder. The errors in our approximate analytic formula for predicting
the redshift are approximately only twice as great. Furthermore, we apply the redshift formula to a silicon cylinder

and discuss its magneto-dielectric properties, which may be of interest in design of metamaterials.

Society of America

©2016 Optical

OCIS codes: (220.4241) Nanostructure fabrication; (310.6628) Subwavelength structures, nanostructures; (260.5740) Resonance;

(290.5870) Scattering, Rayleigh.

http://dx.doi.org/10.1364/JOSAA.33.000391

1. INTRODUCTION

We recently have derived an approximate, analytic formula for
computing the frequency shift between the near- and far-field
electric intensity peaks. This formula originally was derived for
a dielectric scattering sphere [1]. In this paper, we demonstrate
that a very similar formula holds true when a plane wave is
scattered by a dielectric cylinder and a perfect electric con-
ducting (PEC) cylinder; see Fig. 1. This frequency shift for-
mula, termed the redshift formula, allows one to predict the
near-field intensity resonances from the far-field measurements.
One important application of the redshift formula is in design-
ing and tuning nanoparticle resonances to be used as sources or
detectors [2-4]. Generally speaking, it is more difficult to
measure the near-field intensity than the far-field intensity,
and, therefore, the redshift formula allows for an easy indirect
near-field measurement.

Qualitatively, the redshift between the near- and far-field
intensity can be explained by the damped harmonic oscillator
model (see [1,5-7]). Furthermore, Moreno ¢t al. [8] quantita-
tively demonstrate the evanescent wave contribution to the red-
shift, providing the mechanism for the shift. These early works
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become especially important when we consider the behavior of
the redshift as a function of radial distance.

Throughout the paper, we assume that all fields are har-
monic in time with a exp(-iw?) time factor, and all media
are nonmagnetic. Unless explicitly noted otherwise, we use
the Gaussian unit system and the notation defined in Table 1.

2. DIELECTRIC CYLINDER

If a unit plane wave, E" = exp(ik,r cos 0)Z, is incident
on an infinite cylinder centered at the origin of the coordinate
system with its axis running parallel to Z, then the scat-
tered partial-wave electric field is given by ([9,10]; [11],
Section 14.3)

E(r,0) = g,i"A,H ,(k,r) cos(n0)Z, n=20,1,...,
(1a)
where
a
A, =-—"—, 1b
" a, + ic, (1b)
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Fig. 1. Cross-sectional view of the cylinder of radius p is shown.
The wave is incident from Region 1 and is scattered by the cylinder
(Region 2).

k
a, = ] (k)] (kap) - k—jfn(/em)f,;(kzp), (1c)

k
¢y =Y, (k1p)],(kop) - k—j Y, (k1)) (k2p), (1d)

and the prime denotes differentiation with respect to the argu-
ment. The superscript e on the left-hand side of Eq. (1a)
reminds the reader of the electric polarization (TM mode),
and the symbols {/,, Y, H,,g,. 7. 0, ky, ky, p} are defined in
Table 1.

Let us define the angularly integrated scattered intensity as

I (w,r) = / "E,(r,0) E:(r0)d6, r>p (2a)

T

where * denotes the complex conjugate, and normalize it by

4/(kyr), ie.,
klr ~
I,(w,7) = T[,,(a), 7), r>p. (2b)

As we will demonstrate, it is better to work with 7, (w, 7)
instead of 7, (@, 7). In the far-field limit 4,7 > 1, the quantity

Table 1. Brief Description of the Symbols Used
Throughout the Paper

Symbol Description

I Integer order Bessel function of the 1st kind
Y, Integer order Bessel function of the 2nd kind
H, Integer order Hankel function of the 1st kind
2, Neumann factor, i.e., gy = land g, = 2forn >1
(r,0) Polar coordinates, where -7 <0 <

1) Angular frequency

c Speed of light in vacuum

& Permittivity of the host space (Region 1)

& Permittivity of the cylinder (Region 2)

ki = /&% Wavenumber in the ith region

p Radius of the cylinder
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I (®, 7) can be interpreted as the total scattered power because
E, (7, 0) contains only the outgoing waves ([12], Section 5.2).
Also in this limit, the electric field scales as 1/ \/E and thus,
from Eq. (2b) we have that /,,(w, r) is independent of the radial
distance. In other words, 7, (w, r) is constant on a circle of ra-
dius 7 if ;7 > 1. However, from an application point of view,
the quantity of interest in the near field is E,, - E}; or Eq. (2a).
Clearly, these quantities are zero in the far field, and, therefore,
they are not an ideal choice. On the other hand, in the near
field we can think of Eq. (2b) as a measure of the scattered
intensity on a circle of radius 7. Of course, this interpretation
is not identical to its far-field interpretation, but at least this
quantity is nontrivial and has physical meaning in both the
near- and far-field scattering regimes. Obviously, the physical
reason for the difference in the interpretation comes from the
distortion of the electric field near » = p, and this distortion is
mandated by the boundary conditions on the surface of the
scatterer. Last, we note that the rest of the prefactor in
Eq. (2b) is simply chosen so that /,,(w, 7) has an elegant form
in the far field. Our rationale for choosing to work with
Eq. (2b) instead of Eq. (2a) is essentially the same as the argu-
ment presented in [13].

Returning to the scattering of the TM-polarized wave by the
cylinder, we substitute Eq. (1) into Eq. (2b) to obtain

I(w, 1) = |A,(0) fi(@, 7), r2p, (3a)

where
fo= zg kyvr|H ,(kyr)|? and  |A,|]> = —ﬂ% (3b)
n eI g a+

From the asymptotic form of the Hankel function, we see
that Eq. (3) reduces to

I (o) = g,|4, (@) (4)

in the far-field limit, £,7 > 1. The angular frequencies where
Eq. (4) has local maxima can be found by solving the transcen-
dental equation ¢, (@) = 0 for @° [1]. Let us denote their
near-field counterparts by @9, i.e., Eq. (3a) has local maxima
when @ = @°. Both Eq. (3) and Eq. (4) conform to the
requirements of the redshift formula derived in Appendix A
of [1], which we summarize below.

Theorem 1 If a function of the form
A (o)
A?(w) + B*(w)

A(wy)

IH(w,r) = flw,7), where Blay)
0

<1,

has a local maximum in the far field when © = wy, and
B(wy) = 0, then I(w, r) has a near-field maximum that is shifted
with respect to the far-field maximum by

{Mwo)} zf(wo) r)

B(wo)] fl(@or)

Thus, from Theorem 1, we immediately obtain
a,(0%)]? f;(we, r)
Ln(we)] [l )’
where the overdot - denotes differentiation with respect

to @. The above redshift formula allows one to compute the
frequency shift dependence on the radial distance r. It is

Aw(r) z% {

1
Aw(r) = @°(r) - 0° ~ =

: ©)
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interesting to note that, in the Rayleigh limit, the ratio «, /¢, in
Eq. (5) reduces to a particular simple form, namely,

L= -xd) ad Z=T2G -3 (6)

o & 32
where x; = k;p. To derive Eq. (6), we substitute the first three
terms in the power series representation of /, and Y, ([14],
Section 10.2, Section 10.8) into 4,,/¢, and retain only the lead-
ing term in p.

Analogous results can be derived for a magnetically polarized
incident wave (TE mode). If we take the incident wave to be
H" = /e exp(ik;7 cos 0)Z so that E™ . (E")* = 1, then
the scattered partial-wave electric field is given by ([11],
Section 14.3)

EX(r,0) = -¢,i""'B, |:i H,(ky7) sin(nO)t

kl 7
+ H' (ky7) cos(n@)é}, (7a)
where
b
= 7
B, b, +id, (7b)

k
b, = ;jf;uem)/n(/ezp) - JuGkip)(kop),  (Tc)

k
dy = Vb)) (kap) = ¥ (k) kap), - (T9)

and the superscript m on the left-hand side of Eq. (7a)
reminds the reader of the magnetic polarization (TE mode).
Substituting Eq. (7) into Eq. (2) yields

INwr) = [B(@)f @),  r2p, (8a)

where

n

2
V4 n
£ =58 Ho k)P + k| H ()P |, (8b)
1

and
52
|B,|> = %Tﬂdﬁ (8c)
The far-field form of Eq. (8), namely,
INw) = g,|B,(@)],  kr>1, ()

follows immediately from the asymptotic form of the Hankel
function, and the local maxima of Eq. (9) are given by the sol-
ution to the transcendental equation d,(0™) = 0. As in the
TM case, we use Theorem 1 to obtain the redshift formula

T B LA G 2 (™, 7) 0
Ao () = () - @ ”2LG<wm>] S o

Again, we sce that in the Rayleigh limit the terms relating to
the scattering coefficients reduce to a simple form

bO T bl aw [ x3 - x3
0 = S—Z(xf -x3)xf  and o = (x%l_’_ xz% xi. (1)
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To demonstrate the accuracy of the approximate redshift
formulas [Egs. (5) and (10)], we have computed the relative
error as a function of the scaled distance r/p for several reso-
nances. For convenience, we identify these resonances in Fig. 2
via the unitless parameter x*™ = /2] 2= p. Figure 2 shows
that the relative error is less than 5% and the error approaches
zero in the far field as expected. To demonstrate that the near-
field peaks are indeed redshifted with respect to their far-field
counterparts, we plot the scaled redshift as a function of the
scaled distance; see Fig. 3 and note the negative sign on the
vertical axis. Furthermore, observe that the redshift is maxi-
mum near the surface of the particle, i.e., 7/p = 1. Of course,
this is an expected behavior because the redshift is essentially
caused by the evanescent waves [1,8]. We also note that the
redshift is identical for the » = 0 TE mode and the n» =1
TM mode because, from Eq. (8a) and Eq. (3a), we have
2™ = I¢_,. This relationship also explains why &,/d, =
ay /¢y in the Rayleigh limit; see Eq. (11) and Eq. (6).

Having established the validity of the redshift formula, we
illustrate the applicability with example dielectric metamaterials
in which high-refractive-index cylinders are used. In particular,
we consider a silicon cylinder in the near-infrared region where

a2t _y = 2.91992

3
S

k=

g2

£

- .z, = 1.83007
>

i «zS_, = 1.83007
=

0 1
0

Fig. 2. In the dielectric (¢, = 100) cylinder case, the relative error
associated with the redshift formula in Eq. (5) is shown as a function of
the scaled radial distance.
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Fig. 3. In the diclectric (¢, = 100) cylinder case, the scaled redshift
Ax®™ is shown as a function of the scaled radial distance.
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Fig. 4. Scaled redshift Ax€ is shown as a function of the scaled radial

distance from a silicon (¢, = 16) cylinder.
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Fig. 5. Scaled redshift Ax™ is shown as a function of the scaled ra-
dial distance from a silicon (¢, = 16) cylinder. The curves x_, =
0.90114 and -, = 2.03022 show magnetic modes for which the
redshift is stronger in the magnetic mode than in the electric mode.

the permittivity can be as high as 16. From an application point
of view, such metamaterials are of great interest because they
may offer complete control of light at wavelength scales
[15-17]. The redshift as a function of the scaled radial distance
is shown for TM and TE polarization states in Fig. 4 and Fig. 5,
respectively. By comparing these figures, we see that there are
two magnetic resonances (see curves labeled x-; = 0.90114
and xi_, = 2.03022 in Fig. 5) for which the redshift of the
magnetic mode is stronger than that of the electric mode.
The stronger response in the magnetic mode in silicon
particles is possible because of the relatively high index of
refraction [18-20]. We note that these magneto-dielectric
properties are becoming increasingly important in the design
of metamaterials. Therefore, our simple example may be of
value to optical engineers.

3. PERFECT CONDUCTING CYLINDER

If we repeat the derivation presented in Section 2 for a PEC
cylinder, then the 4, and ¢, coefficients in Eq. (1) become
([11], Section 14.2)
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a, =]n(/€1p) and Cn = Yn(/elp)’ (12a)
and the b, and d,, coeflicients in Eq. (7) become
b, =] (kip) and d, =Y, (kp). (12b)

Although the rest of the equations in Section 2 remain un-
changed (except, of course, for the Rayleigh limit formulas), the
interpretation changes. In the PEC cylinder, the fields inside
the cylinder vanish and the scattered field originates from
the surface currents.

By comparing Fig. 2 with Fig. 6, we see that the relative
error in the PEC case is about twice the error of the dielectric
case. This is a very modest decrease in accuracy if we consider
the 2 orders of magnitude increase in the redshift; see Figs. 3
and 7. The main mechanism that produces the redshift in per-
fect dielectrics is the leakage of the evanescent waves from the
internal resonance modes [1]. Moreover, we expect the redshift
in the dielectric case to be small relative to its metallic counter-

part [8].
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Fig. 6. In the PEC cylinder case, the relative error associated with
the redshift formula in Eq. (10) is shown as a function of the scaled
radial distance.
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Fig. 7. 1In the PEC cylinder case, the scaled redshift Ax®™ is shown
as a function of the scaled radial distance.
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4. CONCLUSIONS

We have demonstrated that the previously derived redshift for-
mula is also applicable for both dielectric and PEC scattering
cylinders. This formula predicts the frequency shift between
the near-field electric intensity peaks and their far-field coun-
terparts, which are assumed to be known. Furthermore, we
speculate the redshift formula also should be applicable in
many other scattering situations where the absolute value
squared of the partial scattering amplitudes can be expressed
in the same form. To convince the reader of this, we apply the
formula to another canonical shape and consider two extreme
scattering regimes, namely, scattering by a perfect dielectric
and a perfect conductor. Finally, the results presented in
this manuscript along with the results of [1] suggest that
the redshift formula is of wider applicability than previously
thought.
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