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a b s t r a c t

A fast superposition T-matrix solution is formulated for electromagnetic scattering by a collection of
arbitrarily-shaped inhomogeneous particles. The T-matrices for individual constituents are computed by
expanding the Green's dyadic in the spherical vector wave functions and formulating a volume integral
equation, where the equivalent electric current is the unknown and the spherical vector wave functions
are treated as excitations. Furthermore, the volume integral equation and the superposition T-matrix are
accelerated by the precorrected-FFT algorithm and the fast multipole algorithm, respectively. The ap-
proach allows for an efficient scattering analysis of the clusters and aggregates consisting of a large
number of arbitrarily-shaped inhomogeneous particles.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Electromagnetic scattering by multiple scatterers is of great
significance in many areas of science and engineering such as re-
mote sensing, wave propagation in random media, and design and
analysis of metamaterials. An exact solution to the multiple scat-
tering problem can be conveniently formulated by employing the
field decomposition and the superposition principle. This ap-
proach yields the so-called superposition T-matrix method
(STMM) [1–3]. The STMM has been widely applied to model
electromagnetic scattering by aggregate particles such as atmo-
spheric and cometary dust particles. However, the constituents of
these aggregates are usually assumed to be perfect spheres, which
is a crude and artificial assumption. The STMM can also be applied
to clusters of arbitrarily-shaped inclusions [4], but such methods
have not received much attention in the literature. The STMM can
be used with arbitrarily-shaped constituents provided that each
constituent particle's circumscribing sphere does not intersect any
other circumscribing sphere. The STMM presented in this paper is
suitable for any sparsely packed system where the constituent
circumscribing spheres do not intersect and does not place any
right.

(J. Markkanen),
additional constrains on the scatterers. In other words, the method
presented in this paper is well-suited for sparsely packed systems
such as porous dust particles and metamaterials.

In the STMM, it is possible to compute the T-matrices of the
constituents in advance and store them for later use. This ap-
proach completely decouples the multiple scattering solver from
the single particle T-matrix solver. Numerous techniques exist to
calculate the T-matrix of a single particle, e.g., see [5,6] and the
references therein. For a homogeneous spherical particle, the
T-matrix can be computed analytically via the separation of vari-
ables technique resulting in the well-known Mie solution [7].
However, for a general inhomogeneous particle, a numerical ap-
proach is required. Generally speaking, any numerical method that
solves the Maxwell equations can be used to obtain the T-matrix of
a single particle. The null-field method (extended boundary con-
dition method) [8] is a powerful and widely used method to cal-
culate the single particle T-matrix. Unfortunately, it suffers from
serious numerical instabilities that arise when the shape of the
particle significantly deviates from that of a sphere [9]. The
T-matrix of an arbitrarily-shaped scatterer can be calculated via
the finite-element method (FEM), the finite-difference time-do-
main method (FDTD), or the integral equation method. In the
latter method, each vector spherical wave function (VSWF) is used
as an excitation, and then the scattered fields are matched with
the outgoing VSWFs at some specified points in space [10].
Moreover, in the discrete-dipole approximation (DDA) framework,
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the T-matrix can be determined by expressing the dipole fields in
VSWFs and translating the contribution of each dipole to a com-
mon origin [11].

In this paper, we use the volume integral equation (VIE)
method to calculate the T-matrix of a single arbitrarily-shaped
inhomogeneous particle. In terms of a general dyadic transition
operator, the relation between Lippman–Schwinger VIE and the
T-matrix has been established in [12,13]. Analogously, we derive
the relationship between the matrix arising from the discretized
VIE and the T-matrix. In particular, we use the electric current
volume integral equation (JVIE) formulation [14], which provides a
numerically robust solution for even strongly inhomogeneous
scatterers. The JVIE is discretized by the method of moments
(MoM) with tetrahedral elements using piecewise constant basis
and testing functions. For the T-matrix determination, we expand
the electric Green's dyadic in the VSWFs and construct the
so-called transformation matrices linking the VSWF coefficients to
the MoM basis function coefficients. A similar approach has been
used previously to examine the scattering by perfect electric
conductors using the surface integral equation [15]. Furthermore,
we compute the T-matrix iteratively with the matrix–vector
multiplication accelerated by the precorrected-FFT method [16].
This approach is numerically stable and allows us to efficiently
compute the T-matrices of arbitrarily-shaped inhomogeneous
scatterers. To the best of our knowledge, this approach has not
been previously reported in the literature.

The dimension of the T-matrix only depends on the size of the
scatterer (independent of internal complexity) and thus, the
T-matrix approach can be advantageous in problems that require
repeated solutions of the scattering problem. Such a situation
commonly arises in multiple scattering problems, where the
knowledge of the scattered field is desired for many different
configurations of the multi-particle system. The STMM is a well-
known approach and in the case of spherical particles open-source
software is freely available, e.g., see Fortran 90 MSTM code1 [17].
The computational complexity of the algorithm scales as ( )N2 ,
where N is the number of individual inclusions (T-matrices). Fast
algorithms based on the fast Fourier transform (FFT) [18,19] and
the fast multipole method (FMM) [20,21] have been introduced to
decrease the computational time. Furthermore, the FMM ac-
celerated STMM in combination with the surface integral equation
method has been proposed in [22]. In this paper, the FMM is used
to accelerate the multiple scattering computations.

The paper is organized as follows. In Section 2, the super-
position T-matrix method is introduced with a focus on the de-
termination of the T-matrix from the volume integral equation.
Acceleration techniques for the VIE solution and for the multiple
scattering solution are discussed in Section 3. The method is de-
monstrated via numerical examples in Section 4 and the paper is
concluded in Section 5.
2. Superposition T-matrix method

2.1. T-matrix

Consider a time-harmonic electromagnetic scattering by a
bounded volume D in 3, where the time dependence is

ω( − )texp i and ω is the angular frequency. The T-matrix is defined
as a mapping from the incident coefficients αinc to the scattered
coefficients αsca, namely,
1 Mention of this product is not an endorsement but only serves to clarify what
was done in this work.
α α= ( )T , 1sca inc

where T denotes the T-matrix. In the T-matrix formalism, the in-
cident and scattered electromagnetic fields are expanded in some
basis functions. Most often, the VSWFs are chosen as a basis be-
cause they form a complete orthogonal basis and satisfy the
Maxwell equations in the spherical coordinate system. Thus, the
scattered field can be expanded as

∑ ∑= +
( )=

∞

=−

⎡⎣ ⎤⎦E M Na b ,
2l m l

l

l m l m l m l m
sca

1
,
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, ,
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,

where Ml m, and Nl m, are the outgoing VSWFs based on the sphe-
rical Hankel function of the first kind. The incident field is ex-
panded in the regular spherical Bessel functions, namely,
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⎡⎣ ⎤⎦E M Na b ,
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where Ml m, and Nl m, are the same as Ml m, and Nl m, but with the
Hankel function replaced by the Bessel function of the first kind.
The explicit expressions for the VSWFs can be found in many
textbooks, e.g., [23,24]. In the VSWFs basis, the T-matrix has the
following block matrix structure

=
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From a computational point of view, the electric field expansion
must be truncated at some finite order, say Lmax. This truncation
implies that the dimension of the coefficient vectors a and b is
given by = ( + ) −N L 1 1lm max

2 . In order to achieve convergence,
Lmax should be chosen to be greater than the size parameter of the
circumscribing sphere.
2.2. Volume integral equation solution

Next, we introduce the JVIE method that is described in [14].
The JVIE is accelerated by using the precorrected-FFT algorithm
[16] in the computation of the T-matrix of an arbitrarily-shaped
inhomogeneous particle. The electric current volume integral
equation is given by

∫= − (ϵ − )(∇∇· + ) ( ′) ′ ′ ( )J J r r Jk G V1 , d , 5r
D

inc 2

where ( ′)r rG , is the free-space Green's function for the Helmholtz
equation, k is the wavenumber of the background medium, and
J inc is the incident electric current. In general, we allow the re-
lative permittivity ϵr to be inhomogeneous, but restrict the relative
permeability to unity, i.e., μ = 1r .

We numerically solve the integral equation (5) by applying the
MoM with the volume D discretized by tetrahedral elements and
with the unknown current J expanded in a set of piecewise
constant basis functions bq j, . There exist three basis functions bq j, ,
with j denoting the x-, y-, or z-component associated with each
tetrahedral element q. Thus, the total number of basis functions is

N3 tet, where Ntet is the number of tetrahedral elements in the
mesh.

The equation is tested with the Galerkin's method. In other
words, the test and basis functions are chosen to be identical, i.e.,

=t bq j q j, , . This results in ×N N3 3tet tet matrix equation, namely,

= ( )A x f , 6p i
q j

q j p i,
,

, ,

with elements
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where Tq and ∂Tq denote the tetrahedron q and its surface, re-
spectively. In each tetrahedron Tp, we assume that the relative
permittivity ϵp is constant. The elements of the coefficient vector
appearing on the right-hand side of (6) can be written as

∫= ·
( )

t Jf Vd ,
8p i

T

p i
,

, inc

p

where

ω= − ϵ (ϵ − ) ( )J Ei 1 . 9r
inc

0
inc

For a more detailed discussion of the JVIE method and its dis-
cretization see [14,25].

2.3. Computation of the T-matrix via VIE

In order to compute the T-matrix using the VIE, we first re-
present the regular VSWFs in terms of the VIE basis functions. We
define the transformation matrices as mappings from the VSWF
modes into the L2-conforming piecewise constant basis functions
in the coefficient space as

Π

Λ

→

→ ( )
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Hence, the elements of the transformation matrices are obtained
through the symmetric L2 product, namely,
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Next, we derive an expression for the T-matrix in terms of the
transformation matrices (11) and the JVIE system matrix (7). The
scattered field outside of the scatterer can be computed via

∫ωμ= · ′ ′ ( )E JG Vi d , 12D

sca

where G is the electric dyadic Green's function. By expressing the
dyadic Green's function in terms of the VSWFs [26]

∑

( ′) = + ∇ ( ′)

= ( ) * ( ′) + ( ) * ( ′)]
( )

⎛
⎝⎜

⎞
⎠⎟

⎡⎣

r r r r

M r M r N r N r

G I
k

G

k

,
1

,

i ,
13l m

l m l m l m l m

2
2

,
, , , ,

where * denotes the conjugate transpose, and substituting the
above into (12) yields

∫

∫
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The above equation is a VSWF expansion of the scattered field (2)
with the coefficients given by

∫
∫

ωμ

ωμ
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To calculate the scattered coefficients al m,
sca and bl m,

sca, we first find

the induced equivalent current J using the JVIE method. If we
expand the electric current in the VIE basis functions

∑≈
( )

J bx ,
16q j

q j
q j

,
,

,

and substitute it into (15), and then use the definition of the
transformation matrices (11), we obtain

ωμΠ

ωμΛ

= − *

= − * ( )

a k x

b k x. 17

l m

l m

,
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,
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The indices in (17) have been omitted for simplicity. Note that the
dimension of the vector x is N3 tet and the transformation matrices
Π and Λ are ×N N3 tet lm matrices. Furthermore, the coefficient
vector x can be obtained by solving (6), i.e., computing = −x A f1 .
Finally, the right-hand side coefficients f in (6) can be expanded in
terms of the VSWF coefficients to obtain
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because the basis and test functions are identical. Writing the
scattered VSWF coefficients in terms of the incident VSWF coef-
ficients yields

Π τ Π Λ

ωμΛ τ Π Λ
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where τ = (ϵ − )1pi is the diagonal parameter matrix. Rewriting
(19) in a block matrix form yields
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Hence, we have obtained a representation for the T-matrix in
terms of the JVIE matrix (7) and the transformation matrices (11).
The above expression requires the inverse of the A matrix, which
may be impractical to compute for large problems. We will further
discuss computational aspects of (20) in Section 3.
2.4. Multiple scattering

Let us consider scattering by N scatterers whose T-matrices are
assumed to be known and are denoted by Ti, where = …i N1, , .
We require that the circumscribing spheres enclosing individual
scatterers do not intersect each other. From now on, we simplify
our notation and define the multi-index coefficients as a vector
α = [ ]a b,l m l m

T
, , . In this notation, the scattered coefficients for each

scatterer satisfy

∑α α α= + = …
( )= ≠

T T H i Nfor 1, , .
21

i i i i
j j i

N

i
j

j
sca inc

1,

sca

The translation operator Hi
j translates the outgoing (scattered)

coefficients of the ith scatterer to the regular (incident) coefficients
at the location of the particle j. The explicit expression for Hi

j can
be found in [27,28]. The above equation can be written in matrix
form as
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where I is the identity matrix. To compute Hi
j we use a rotation →

axial translation → inverse rotation technique with recursively
computed rotation and axial translation operators [29,30]. The
complexity of such a translation scheme is of order ( )Lmax

3 .
3. Fast superposition T-matrix method

The method described in the previous section requires the in-
version of two potentially large matrices. Specifically, the JVIE
matrix (7) needs to be inverted and the inverse of the matrix (22)
in the multiple scattering solution is also required. In practice,
these matrices may be very large and their direct inversions are
most often impractical. Therefore, we elect to solve both of the
matrix equations iteratively using an accelerated matrix–vector
multiplication scheme in each iterative step.

3.1. VIE acceleration with precorrected-FFT

When computing the T-matrix via the VIE method, our task is
to compute matrices of the form Γ τΓ* −A 1 , where Γ Λ= or Σ. The

×N N3 tet lm Γ-transformation matrices are small because
≫N Ntet lm, and can be computed and stored in computer memory

in advance. The VIE system matrix A is a large ×N N3 3tet tet matrix.
Thus, we compute the T-matrix iteratively without ever explicitly
forming it.

We solve each column ( ′ = ′ =l L m M, ) of the T-matrix,
=′ ′ ′ ′a T al m l m

l m
l m,

sca
,

,
,
inc, separately for each VSWF excitation modes

( = =l L m M, ) with

= = =
( )

⎧⎨⎩a
l L m M1 if ,

0 otherwise
.

23
lm
inc

The matrix–vector multiplication Γ al m
lm

, inc is simply the column
vector of the transformation matrix ΓL M, corresponding to the VIE
basis expansion coefficients of the L M, -mode of the VWSF. The
computation of τΓ=yL M L M, , is essentially an element-wise multi-
plication because the material parameter matrix τ is diagonal.

Next, we compute the matrix–vector product = −x A yL M L M, 1 ,

without explicitly computing the A�1 matrix. We can see that the
above matrix–vector product is equivalent to solving the matrix
equation =y AxL M L M, , for xL M, . We solve the matrix equation
iteratively using the generalized minimal residual (GMRES)
method with the matrix–vector multiplication accelerated in each
iterative step via the pFFT method [16]. The details of the pFFT
algorithm are omitted, but the basic idea in the pFFT method is to
form an auxiliary regular grid, where the grid points are uniformly
spaced in the Cartesian coordinate system. The current in the
primary tetrahedral mesh is mapped onto the grid points by
matching the radiated near fields. Then, the interactions between
the grid points are computed with the FFT and the grid potentials
are mapped back to the primary mesh. This procedure is in-
accurate in the near-field region (near-zone). Therefore, we com-
pute the near-field interactions directly from (7) and use the re-
sulting sparse matrix in the pre-correction step in the pFFT algo-
rithm. Computing the pre-correction matrix is a time-consuming
step, but fortunately it needs to be computed only once because
the matrix is sparse and thus, can be stored in computer memory.
Computational complexity for one solution scales as ( )N Nlogtet tet

in time and ( )Ntet in memory. The direct computation of the
matrix–vector product would scale as ( )Ntet

2 ; therefore, we have
significantly accelerated the computation of xL M, .
Finally, we compute the scattered coefficient vector

Γ= *′ ′a xl m L M, , which equals the column vector of the T-matrix ′ ′Tl m
L M,

because we have used L M, -mode as an excitation. The same
computations are repeated for the bl m, coefficients. Thus, the
complete computation of the T-matrix requires N2 lm VIE solutions.
This approach is efficient and relatively simple to implement be-
cause it only requires matrix–vector multiplications applied to the
force- and solution-vectors of the discrete VIE system. Further-
more, the T-matrix computation does not require the evaluation of
the scattered fields. This is in contrast to the T-matrix extraction
techniques based on far-field point-matching.

3.2. Multiple scattering acceleration with FMM

To obtain the superposition T-matrix solution, we require the
inverse of the multiple scattering matrix (22). We use the GMRES
iterative solver and accelerate the matrix–vector multiplication via
the FMM. The basic idea in the FMM is to form particle groups in
hierarchical manner and compute the interactions between groups
rather than individual particles. This procedure reduces the total
number of operations in the matrix–vector multiplication. A sub-
stantial amount of literature exists on the FMM (e.g., see [31–
33,21]). Below, we briefly discuss the FMM algorithm that we use
in the superposition T-matrix solution.

3.2.1. Hierarchical octree data structure
All scatterers are enclosed by a box of size × ×d d d0 0 0 and the

box is then divided into 8 sub-boxes each of size × ×d d d1 1 1,
where =d d /21 0 . The subscript l in dl denotes the level of the data
structure. Each non-empty box at level l is recursively divided into
smaller boxes until some maximum level lmax is reached. Thus, a
hierarchical data structure with “parent–children” relationship is
generated with the edge-length of = −d d2l

l
0 at level l. We define

the maximum level lmax such that >d r4lmax , where r is the largest
radius of the circumscribing sphere of the particle in the box. This
choice guarantees that the translations between non-neighboring
boxes are valid [21].

3.2.2. Aggregation
At the maximum level lmax, we compute the scattered coeffi-

cients for each box i centered at rc
i via

∑α α= ( − )
( )

r rJ ,
24

l
i

n

i
n

n
c

i

i
i

max

where αn
i are the scattered coefficients of the scatterer ni whose

center rni is inside the box i. The translation matrix ( − )r rJ i
nc i is

based on the spherical Bessel function and it translates the scat-
tered coefficients at rni to the scattered coefficients at r i

c. Next,
starting from level lmax, we compute aggregation for each parent
box recursively up to the level l¼2, i.e.,

∑α α= ( − )
( )− r rJ ,
25

l l1
parent

child
c
parent

c
child child

and therefore, we obtain the scattered coefficients for each
box at levels = …l l , , 2max . The truncation order is defined
separately for each level by Wiscombe's criterion [34,35]

= + ( )L d d3 /2 4 3 /2l l lmax,
3, such that >L 5lmax, . It is worth

noting that the J translation matrix is not a square matrix
because the radius of the circumscribing sphere of the parent
cube is twice the radius of the child's cube.

3.2.3. Translation
Next, we compute the interactions between aggregates at le-

vels = …l l , , 2max . The translation operator H is based on the
spherical Hankel function because the scattered coefficients at rc

i



Fig. 1. The elements of the T-matrix computed by the VIE and Mie methods. The
results of the two methods agree to at least 1 significant digit.
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are translated to the incident coefficients at rc
j. The H translation is

valid if the circumscribing spheres of aggregates do not intersect
and, therefore, we see that the translations cannot be done be-
tween the neighboring boxes. Furthermore, because we use the
multilevel algorithm, the translations between boxes whose par-
ents are neighbors but who are not neighbors themselves (inter-
action zone) are given by

( )∑α α= −
( )

r rH ,
26

l
j

c
j

c l
int

int int

j

j j

where the sum is over the boxes intj in the interaction zone of the
box j. Thus, we finally obtain the incident coefficients for each box
due to the other boxes in the interaction zone.

3.2.4. Disaggregation
The disaggregation step is the reverse of the aggregation step,

i.e., starting from l¼2 we distribute the data recursively (from
parents to children) to the lowest level and finally to the individual
particles. The translation is incident-to-incident and it turns out to
be exactly the same as the scattered-to-scattered translator J in the
aggregation step [21]. Thus, the only interactions that still need to
be computed are the interactions between scatterers located in the
near-zone.

3.2.5. Near-zone interactions
The near-zone interactions between particles that belong to

neighboring boxes at level lmax are computed directly via

∑α α= ( − )
( )

r rH ,
27

l
n

n
n n l

n
max

near

near max
near

where nnear denotes the particles in the near-zone of the particle n.
Finally, by summing up the near- and far-zone interactions,

then multiplying the resulting incident coefficients of each particle
by the corresponding T-matrix, we obtain the matrix–vector
multiplication required in the iterative step of the matrix equation
solution, see (20).
Fig. 2. The discretized inhomogeneous irregular dust particle is shown where the
colors denote different material parameters.
4. Numerical experiments

To validate our approach, we preformed a number of numerical
experiments and, where feasible, compared the results with other
methods. All computations are performed in double-precision
(≈16 significant digits) and the scatterers' parameters are chosen
to be representative of porous dust particles.

4.1. Computation of the T-matrix

We will first consider a numerical calculation of the T-matrix
via the VIE method. The scatterer is a sphere of size =kr 2 and
relative permittivity ϵ = +3 0.1ir . The sphere is discretized by
4,357 tetrahedral elements giving a total of 13,071 unknowns. We
calculate the order of the T-matrix using Wiscombe's criterion
giving, =L 7max . Therefore, this T-matrix required us to solve

=N2 126lm VIE problems. Fig. 1 shows the diagonal elements of
the T-matrix computed via the numerical VIE method and the
analytical Mie solution.

The initialization step (computation of the pre-corretion ma-
trix, pfft-projectors, and the transformation matrices) in the VIE
solution takes approximately 35 s with the computation of the
pre-correction matrix taking about 99% of the total initialization
time. The VIE solution for one incident field takes approximately
1.2 s (11 GMRES iterations, = −tol 10 5) thus, the total computation
time of the T-matrix is approximately + × ≈35 s 1.2 126 s 190 s.

As our next example, we will compute the T-matrix of an
irregular inhomogeneous particle that has been previously used to
model scattering by cometary dust [36]. This particle is composed
of two materials and its shape is illustrated in Fig. 2. The first
material has a relative permittivity of ϵ = +2.9 0.1ir1 and occupies
60% of the volume of the particle. The second material has a re-
lative permittivity of ϵ = +3.3 3.2ir2 and occupies 40% of the
volume.

The size parameter of the circumscribing sphere is ka¼3. The
particle is discretized by 31,348 tetrahedral elements, resulting in
94,044 unknowns. The T-matrix order is set to =L 7max , hence,

=N2 126lm VIE solutions are needed to compute the T-matrix. The
solution time for the initialization is 227 s and 126�18 s¼ 2,268 s
(18 iterations) for the 126 VIE solutions. Fig. 3 shows the scattered
intensity S11 and the degree of linear polarization −S S/21 11 for an
incident plane wave propagating along the z-axis. The VIE solution
and the T-matrix solution also show similar agreement for the
other elements of the scattering matrix. It worth noting that the
size of the T-matrix is rather small 126�126, but the size of the
VIE matrix is quite large 94,044�94,044. Therefore, we see that
applying the superposition T-matrix method to a multiple scat-
tering problem can substantially decrease the complexity of the
problem, especially when the individual scatterers are of a com-
plex shape such as the one shown in Fig. 2.



Fig. 3. The scattering matrix elements S11 and −S S/21 11 are shown. The elements are computed by the VIE method directly and by the T-matrix method in which the T-matrix
is computed with the VIE method. The results of the two approaches agree to at least 2 significant digits.

Fig. 4. The scattering matrix elements S11 and −S S/21 11 for a × ×80 80 6 (arb. units) slab of 1,000 randomly positioned homogeneous spheres of varying size and permittivity
are shown. The elements of the scattering matrix are computed with the MSTM code and the FaSTMM code. The two codes agree to at least 2 significant digits.

Fig. 5. The time per iteration as a function of the number of equisized spheres
(kr¼2) randomly distributed in a spherical domain with the packing density of
0.3 is shown. The computational complexity for the FaSTMM code is of the order

( )N Nlog for evenly distributed systems, where N is the number of spheres.
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4.2. Multiple scattering by spherical particles

To validate our superposition solution, we solve a multiple
scattering problem involving spherical inclusions and compare the
results to an independent and open-source superposition T-matrix
code (MSTM version 3.02 [17]), where the T-matrices for the
spheres (inclusions) are calculated using the analytical Mie solu-
tion. As an example, we consider a 1,000 spheres that are packed
into a box of size × ×80 80 6 in arbitrary units. The radius of each
sphere is chosen randomly from a uniform distribution between
1 and 2 (arb. units) and the relative permittivity of each sphere
ranges from +3.2 0.2i to +5.2 0.3i, i.e., (ϵ ) ∈ [ ]Re 3.2, 5.2r and

(ϵ ) ∈ [ ]Im 0.2, 0.3r . The incident wave propagates along the z-axis
with the inverse wavenumber =−k 1 arb1 . units. Fig. 4 shows the
Mueller matrix elements computed with the MSTM code and our
fast superposition T-matrix method (FaSTMM) code. The FaSTMM
solution is about 6 times faster than the MSTM solution. One
iteration takes 64 s with the MSTM code and 11 s with the
FaSTMM code. In the FaSTMM solution, the T-matrices are com-
puted in real time using the analytical Mie solution and not the VIE
solution. This is only done in this example in order to focus on the
superposition T-matrix instead of the T-matrices associated with
the constituent particles.

Furthermore, we use the FMM to speed up the matrix–vector
2 Mention of this product is not an endorsement but only serves to clarify what
was done in this work.
multiplication in the iterative solver of the FaSTMM code. Fig. 5
shows the computational time per iteration as a function of the
number of spheres in the system. The spheres are randomly
packed inside a larger sphere such that the packing density is
0.3 and the spheres do not overlap. The size parameter of each
sphere kr¼2. Clearly, the computational time follows the expected



Fig. 6. A cluster of randomly oriented Gaussian random sphere particles is shown. Fig. 8. The ensemble-averaged Mueller matrix elements S11 and −S S/21 11 of the
cluster of 10,000 randomly oriented GRS particles are shown.
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( )N Nlog for the FaSTMM code and ( )N2 for the MSTM code.
However, we should note that the computational complexity of
our implementation of the FaSTMM can be higher if the total vo-
lume of the box enclosing all of the particles increases faster than
N1/3 because our translation scheme scales as ( )Lmax

3 . This pro-
blem can be avoided by applying the diagonal form of the trans-
lations [37], but this will make the implementation much more
difficult.

4.3. Multiple scattering by arbitrarily-shaped particles

Finally, we consider arbitrarily-shaped particles packed inside a
spherical domain. The scatterer is a cluster of 20 Gaussian random
Spheres (GRS) particles ( ϵ = 1.716r ) that are randomly positioned
and randomly oriented. Because each inclusion has the same shape
but different orientation only one T-matrix needs to be computed
and stored in advance. The T-matrix of each inclusion is rotated to
the predefined orientation during the execution of the multiple
scattering algorithm. The T-matrix can be rotated by applying the
rotation operator D for the VSWFs, i.e., = *T D TDrot . Fig. 6 illustrates
the scattering cluster and Fig. 7 shows the Mueller matrix elements
computed with the FaSTMM code and the JVIE code. The FaSTMM
Fig. 7. The Mueller matrix elements S11 and −S S/21 11 of the cluster of GRS particles are sho
and the JVIE method. The results of the two methods agree to at least 2 significant dig
solution is substantially faster, taking less than 1 s for the multiple
scattering part and 800 s for the T-matrix computation, whereas the
JVIE solution takes 1,700 s. A single GRS particle is discretized by
8,212 tetrahedral elements resulting in 164,240 elements and
492,720 unknowns in the VIE solution. The order of the T-matrix is
set to 6, which corresponds to the T-matrix size of 96�96. It is
worth noting that the STMM approach becomes extremely efficient
when compared to the VIE approach when multiple solutions are
needed. For example, it would take approximately 10 days to com-
pute ensemble-averaged (500 realizations) scattering features with
the VIE method and less than 10 minutes with the FaSTMM.

As our last example, we consider a cluster of 10,000 randomly
positioned and randomly oriented particles embedded in a larger
sphere of size kR¼64. The particles in the cluster are randomly
sampled from the collection of 10 different GRS particles whose
T-matrices have been computed in advance. The circumscribing
sphere's size parameter of each particle is 2 and the relative per-
mittivity of each GRS particle is 1.716. The Mueller matrix elements
are averaged over 96 clusters and 64 scattering planes. The en-
semble-averaged intensity and the degree of linear polarization are
shown in Fig. 8. We conducted the computations on the CSC
wn. These are computed with the multiple scattering T-matrix algorithm (FaSTMM)
its.
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supercluster Taito using 96 Intel Haswell E5-2690v33 with 2.6 GHz
cores each having a 5.3 GB of available memory. The solution for one
GRS cluster takes approximately 3 hours with one core (420 s per
iteration) and 18 GMRES iterations to reach the tolerance of 10�3.
5. Conclusions

We introduced a fast superposition T-matrix method (FaSTMM)
for solving electromagnetic scattering problems involving a cluster
of arbitrarily-shaped inhomogeneous particles. In this framework,
the T-matrices of the individual particles are computed via the
electric current VIE method by forming discretization-dependent
transformation matrices, which are then used in the T-matrix
extraction. The VIE method is accelerated by the precorrected-FFT
method. The approach provides a numerically stable technique for
determining the T-matrix of an arbitrarily-shaped inhomogeneous
particle. Our method is relatively simple to implement and only
requires matrix–vector multiplications applied to the force- and
solution-vectors of the VIE system. This is particularly desirable
because an existing VIE solver may be used without any
modifications.

We used the superposition T-matrix method accelerated by the
multilevel fast multipole algorithm to solve the multiple scattering
problem. This method allows us to analyze scattering problems in-
volving a large number of arbitrarily-shaped particles while keeping
the computational resources requirement within reason. The
T-matrix computations and the multiple scattering solution are
completely decoupled because in the FaSTMM we use the pre-
computed T-matrices as inputs. This is advantageous because the
method allows for a flexible analysis of the multiple scattering
problem. In the low frequency regime, the computational com-
plexity of the method scales as ( )N , where N is the number of
individual constituent particles. However, in the high frequency re-
gime, the complexity depends on the distribution of the scatterers
and varies between ( )N Nlog and ( )N2 . Further acceleration can
be obtained by using the diagonal form of the translation operator,
which guarantees ( )N Nlog complexity for all systems.
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