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Abstract

Green’s theorem and Green’s identities are well-known and their uses span almost every branch of
science and mathematics. In this paper, we derive a vector analogue of Green’s three scalar identities
and consider some of their uses. We also offer a number of historical tidbits in connection to the work
of George Green.

1. Introduction

In 2028, it will be exactly two centuries since George Green, a self-taught miller of Nottingham, wrote his
revolutionary essay titled An Essay on the Application of Mathematical Analysis to the Theories of Electricity and
Magnetism [1]. In the first part of the essay, Green writes:

Let Uand V' be two continuous functions of the rectangular co-ordinates x, y, z, whose differ-
ential co-efficients do not become infinite at any point within a solid body of any form whatever;
then will

[ dy de oV + [do U(Z—X) = [ax dy dz vsU + fdav(%);

the triple integrals extending over the whole interior of the body, and those relative to do, over its surface, of
which do represents and element: dw being an infinitely small line perpendicular to the surface, and measured
from this surface towards the interior of the body [6 denotes the Laplacian operator A]. [1], p. 23The above
equation, which Green proves via integration by parts, is what we now call Green’s second identity or Green’s
theorem. The importance of Green’s second identity in the exact sciences cannot be overstated. Without a doubt,
the reader of this journal has seen Green’s second identity in at least one scientific subfields such as
electromagnetism, fluid mechanics, acoustics, quantum field theory or even the theory of functions of a complex
variable. However, the reader may be unaware of the vector analogue of Green’s second identity even though it
has been available since atleast 1913 [2], p. 182. Recently, Ferndndez-Guasti pointed out that the vector version
of Green’s second identity is not readily available even in specialized literature [3]. To remedy this situation,
Fernandez-Guasti performs a rather cumbersome derivation of Green’s second vector identity by explicitly
restricting the derivation to a Cartesian coordinate system [3].

In this paper, we derive Green’s second vector identity as a natural consequence of his first vector identity.
Green’s third vector identity can be derived from his second identity but the derivation is somewhat
sophisticated because it requires the covariant derivatives to commute. Therefore, to make this paper appealing
to alarger audience, we present a simple alternative derivation in the body of the paper and defer the
sophisticated derivation of Green’s third vector identity to the Appendix. In order not to restrict Green’s three
vector identities to a Cartesian coordinate system, we use some elementary elements of tensor calculus that
should be familiar to the reader from a typical math-methods course or electrodynamics course, e.g., see [4],
Ch. 2 and [5], Ch. 11, respectively. Having established a vector analogue of Green’s three identities, we consider
their application to the vector Laplace and Helmholtz equations [6]. Furthermore, we point out some erroneous
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Figure 1. Volume €2 with boundary 02 and an outward unit-normal N are shown.

and/or misleading statements in the literature in connection with Green’s second vector identity and vector
diffraction theory.

2. Background review and notation

We only consider a simply connected finite volume €2 with a smooth boundary 92 and denote the differential
volume and differential surface element by d°Q2 and d*(2, receptively. The outward unit normal to 92 is denoted
byN, see figure 1.

The coordinates of a source point in the three-dimensional Euclidean space are denoted by Z', 7%, Z or simply
by Z, and the position vector is denoted by r = r(2). Thus, the covariant ambient basis vectors are given by

Z;, = ir(Z) fori =1, 2, 3.
0zZ'
For example, in the usual Cartesian coordinate system (x, y, z) we simply have Z;, = X, Z, = ¥, Z; = Zand in
the spherical coordinate system (r, 6, ¢) we have

Z,=sinfcosp X + sinfsing ¥ + cos Z =1,
Z,=rcosfcosp X+ rcosfsing §y —rsinf z = r0,
Z;=—rsinfsing X + rsinfcosp § = r sin 0.

Throughout the paper, we use tensor notation with the Einstein summation convention, where the Latin
alphabet indices range from 1 to 3. In this notation, an arbitrary vector A may be writtenas A = A'Z; = A;Z/,
where A’and A; are the contravariant and the covariant components of the vector A. The covariant basis Z; are
related to the contravariant basis Z' via Z; = Z;;Z/, where Z;; = Z; - Z;is the fundamental tensor. For example, in a

Cartesian coordinate system, the fundamental tensor is simply the identity matrix and in the spherical
coordinate system it is given by

1 0 0
Z,’j =|0 r2 0
0 0 r?sin?6

The covariant derivative is denoted by V;and the contravariant derivative by V. Of course, the two are related
viaV,= ZI-]-Vj and in the Cartesian coordinate system, we have V, = V' = 9/9x, V, = V> = 0/9y,
V3 = V? = 0/0z. The divergence of the vector field A is given by V - A = V,A’ = V'A, and the Laplacian by
AA = V,V'A. Animportant property of the covariant and contravariant derivatives is that they are metrinilic
with respect to the basis, i.e., V;Z; = 0 and V'Z; = 0. The divergence theorem is given by

[ vaae = [ N4 o, M

Q G)

where N; are the covariant components of the outward unit vector N, see figure 1. We will make extensive use of
the divergence theorem in the derivations and applications of Green’s vector identities. Thus, it is of benefit to
consider a simple intuitive example. Intuitively it is clear that /50N d*2 = 0 for any closed surface OS2 because a
body placed in a uniform pressure field remains at rest. To see this mathematically, we apply (1) and use the
metrinilic property to obtain

f N &0 = f Nz, &0 = [ viz, ¥ =o.
o0 o0 Q
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3. Green’s first vector identity

To derive Green’s first vector identity, we look at the UA V term on the left-hand side (LHS) of Green’s second
identity quoted in section 1 and consider a relatively obvious ansatz P - AQ. Substituting the well-known vector
identity AQ = V(V - Q) — V x V x Qinto the ansatz and using the vector identity V - (A x B) =
B-(VxA) —A-(V x B)withA=PandB =V x Qyields

P-AQ=V - PxVxQ—-(VxP)-(VxQ+P- [V(V- Q] (@)

Thelast term on the right-hand side (RHS) of (2) is the root cause of the agony in the derivation by Ferndndez-
Guasti [3]. To avoid the agony, we re-write it in tensor notation and use the product rule to obtain

P [V(V - Q1= P[V(V;Q)]
= VI[P (V;Q)] — (V:P)(V;Q))
=V-[P(V-Q] - (V-P)(V-Q. 3

Finally, substituting (3) into (2) and using the divergence theorem we obtain Green’s first vector identity;
namely,

) N-[PxV x Q+P(V-Q)dQ
o2

ZJ;P-AQdSQJer[(VXP)-(VXQ)+(V-P)(V-Q)]d39- C))

Two useful alternative forms of the LHS of (4) can be obtained via the vector identities A - (B x C) =
B-(CxA)=C-(AxBjie, N-[PxVxQ=-P-[INxVxQ=NxDP)-(VxQ).

Ifwe set Q = Pin (4), then the last integrand on the RHS of (4) is nonnegative. Thus, we can refer to the last
integral on the RHS of (4) as the Dirichlet energy and expect it to play an essential role in the uniqueness proofs of
(vector) Poisson’s equation.

4. Green’s second and third vector identities

Green’s second (scalar) identity is traditionally derived from his first identity by subtracting from the first
identity another first identity with the interchanged roles of Uand V. The same procedure can be used to derive
Green’s second vector identity; interchanging the roles of P and Q in (4) and subtracting it from (4) immediately
yields

f[Q-AP—P.AQ]cPQ:f N-[QXVxP—PxV x Q]dQ
Q o0

+ [ 1N Q- P) — (N PV - QI 5)
(%Y’

Green’s third (scalar) identity is ordinarily derived by letting U or V'in the second identity be the free-space
Green’s function satisfying

Ag(r/) I') = _5(1./ - l'), (6)

where § (r' — r) is the Dirac delta function, ' = r(Z’) is the position vector of an observation (field) point, and
A operates on the source coordinates Z (not Z'). We present this approach in the appendix because we prefer to
show a much simpler approach here based directly on (6). To derive Green’s third vector identity from (6), we
multiply (6) by P and subtract gV;V'P from both sides of the resultant equation to obtain

Vi(PVig — ¢V'P) = —P6(t' — 1) — g A P. 7)

Integrating (7) over the volume €2 and using the divergence theorem on the LHS of (7) yields Green’s third vector
identity

OP 0g P(') forr' € Q
— — P=|dQ — APEQ = s 8
fag (g ON (’)N) fg § {0 fort' & Q ®)

where the normal derivative is denoted by 0)/ON =N -V = N 'V, From (8), we see that the knowledge of P and
OP/ON on the boundary 0f2 is sufficient to reconstruct a vector harmonic function (a function that satisfies A
P = 0) inside the volume 2.
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5. Application of Green’s first identity

Itis common to use Green’s first (scalar) identity in the uniqueness proofs of a solution to (scalar) Poisson’s
equation with the Dirichlet and the Neumann boundary conditions. To keep with our parallel development of
the vector Green’s identities, we present a similar analysis of the vector Poisson’s equation, where the proofisa
bit more intricate and the space of the boundary conditions is a bit more vast.

Let U be a solution to the vector Poisson’s equation

AU =F inQ) 9
with the Dirichlet boundary conditions
U=L onoQ, (10a)
the magnetic boundary conditions
NxVxU=] and N-U=o0 ondQ, (10b)
or the electric boundary conditions
N x U=K and V-U=p ondfd (10c)

1 2
If we assume there are two solutions U and U that satisfy (9) with one of the boundary conditions in (10), then

1 2
V = U — U satisfies the vector Laplace equation

AV =0 inQ (11)
with the homogeneous boundary conditions:
V=0 onof, (12a)
NxVxV=0 and N-V=0 ondf, (12b)
or
NxV=0 and V-V=0 ondQ. (12¢)

From (12b) and (12c), we see that the terms magnetic and electric boundary conditions come from the
boundary conditions that the electric field satisfies on the surface of a perfect magnetic and electric conductor,
respectively [7]. If we set P = Q = V in the Green’s first vector identity (4) and use (11) with (12a), (12b) or (12¢),
then we see that the Dirichlet energy vanishes in all three cases, i.e.,

f (IV x VP + |V - VR)&Q = 0. (13)
Q

The functions |V x V]and|V - V|are nonnegative. Therefore, the only way the integral in (13) can vanish is if
we have
VxV=0 and V-V=0 inf. (14)

From the first equation in (14), we see that V can be written as a gradient of the scalar potential ) and, from the
second equation in (14), we see that 1) satisfies Laplace’s equation, i.e., A1) = 0in €2. From (12a) and (12b) it
follows that in the case of the homogeneous Dirichlet and magnetic boundary conditions we have the
homogeneous Neumann boundary condition on 1, i.e., /0N = 0 on 0S2. It is well-known from Green’s first
(scalar) identity that the Neumann problem is unique up to a constant. Thus, V = 0 and the solution (if it exists)
to the vector Poisson’s equation is unique provided we have the Dirichlet or magnetic boundary conditions.

In the case of the homogeneous electric boundary conditions, the situation is more difficult because after
applying Green’s first (scalar) identity we obtain

2130) — 8_1/)2
fﬂlvwldQ—LQwaNdQ (15)

instead of fQ |V Pd*Q = 0. To proceed further, we decompose the gradient operator into the tangential and
normal parts to obtain

2
0

V= g Sa VY + N—;,, 16
ON (10

a=1

where S,, are the covariant basis tangential to the surface 92 and V' is the surface contravariant derivative.
Substituting (16) into the first equation in (12¢) and noting that S, and N are orthogonal yields

4
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2
> 8,V = 0. (17)

a=1

From (17) we see that ¢ is constant on the surface 02, and therefore, 1) may be taken out of the surface integral in
(15) to obtain

oY
vepde =y [ SUaeo. 18
J vl = (18)
After applying the divergence theorem to the second equation in (14) we see that the surface integral of the
normal derivative of ¢ vanishes. Therefore, the RHS of (18) also vanishes and we conclude that 1) must be
constantin 2. Thus, V = 0in ) and we see that the solution (if it exists) to the vector Poisson’s equation with the
electric boundary conditions is unique.

6. Application of Green’s second and third vector identities

Perhaps one of the most important theorems in electromagnetic wave diffraction or in antenna theory is the
Stratton—Chu formula [8]. This formula is sometimes also called the vector Kirchhoff formula, presumably
because it can be directly derived from the scalar Kirchhoff formula. However, Baker and Copson object to such
aderivation;

To deal with radiation, it is in fact necessary to have recourse to the electromagnetic theory of
light. Whilst it is true that Kirchhoff’s formula can be applied to each of the components of the
electric and magnetic vectors, this does not constitute a valid formulation of Huygens’ principle
as it possesses no physical interpretation. [9], p. 102

Baker and Copson derive what they call the Larmor—Tedone formula (Stratton—Chu formula) by following

E. T. Whittaker’s notes, which were presumably based on the work of Larmor and Tedone. Judging by the
citation on page 106 in [9] it does indeed seem that Larmor and Tedone derived the formula circa 1917, i.e., over
two decades before Stratton and Chu. Tai points this out and suggests that:

[...] presumably because of the simplicity with which Stratton and Chu derived their formula, the
formula bears the names of the two authors. [10], p. 104

However, this is doubtful because eight years earlier Murray [11] independently derived the Stratton—Chu
formula via a simple application of Green’s second vector identity. Furthermore, judging from the work of
Hasenohrl [12], itis reasonable to assume that at least some form of the Stratton—Chu formula was known
since 1906.

In modern literature, there is still a disconnect between the Stratton—Chu formula derived via Green’s
second vector identity and via the Kirchhoff formula. The derivations are unnecessarily restricted to a Cartesian
coordinate system and thereby implicitly or explicitly convey to the reader that the two are only equivalent in a
Cartesian coordinate system; e.g., see [5], §10.6 for the Cartesian restricted derivation of the Stratton—-Chu
formula from the scalar Kirchhoff formula and [13] for the Cartesian restricted reduction of the Stratton—Chu
formula to the Kirchhoff formula. We address this disconnect below.

Assume that all fields are harmonic in time with the suppressed time factor exp(—iwt), where wis the
angular frequency, t denotes time, and i = +/— 1. Furthermore, if we assume the source-free volume 2 can be
characterized by the complex constants € (permittivity) and p (permeability), then from Maxwell’s equations we
have

V x E=1iuwwH in ) and on 012, (19a)
V-E=0 inandon 01, (19b)

and
AE+ KE=0 in(, (19¢)

where the wavenumber k = /et w, E denotes the electric field, and H denotes the magnetic field. The free-space
Green’s function, G (r/, r), to the vector Helmholtz equation (19c¢) is defined by

AG, 1) + K*G(@', 1) = =6 — 1). (20)

Similarly to our derivation of Green’s third vector identity in section 4, we multiply (1 9¢) by G and (20) by E, then
apply the divergence theorem to the difference to obtain

5
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OE 9G) ,, E@') forr' € Q
OF _ g9G ) o — .
LQ (GaN EaN)d {o fort' € Q 20

Notice that (21) is essentially Green’s third vector identity with the free-space Green’s function for the Helmholtz
equation instead of for the Laplace equation, i.e., G(1’, r) instead of g (¢, r). Furthermore, notice thatina
Cartesian coordinate system, (21) yields the scalar Kirchhoff formula for each rectangular component; however,
(21) is not restricted to the Cartesian coordinate system.

Itis difficult to see directly from (21) that it is equivalent to the Stratton—Chu formula in Euclidean space.
Thus, we will show this equivalency in an indirect manner. Substituting P = Eand Q = GC, where Cisan
arbitrary constant vector, into Green’s second vector identity (5), then using 19, (20), and the vector identity

N-{E x [V x (GO)]} =C - [(N x E) x VG]
yields the Stratton—Chu formula, namely,

E@), r € Q

0. raq (22)

—fm lipw(N x H)G + (N - E)VG + (N x E) x VG]d*Q = {
However, substituting P = Eand Q = GCinto Green’s second vector identity (5), then proceeding as in the
appendix yields (21). Therefore, we see that the Stratton—Chu formula is indeed equivalent to (21). Of course, it
is possible to directly reduce the Stratton—Chu formula (22) to (21). This is done explicitly in section V of [ 14].
Finally, we remark that the fact that the covariant derivatives commute (the Riemann—Christoffel tensor
vanishes) in Euclidean space is essential to establishing the equivalency between (22) and (21).

7.Summary

We derived three Green’s vector identities given by (4), (5), and (8). The derivations were performed in a natural
way without restricting ourselves to a Cartesian coordinate system. We used Green’s first vector identity to show
the uniqueness of a solution to the vector Poisson equation under Dirichlet, magnetic, and electric boundary
conditions, see section 5. Furthermore, we used Green’s second and third vector identities to address the
equivalency of the Stratton—Chu formula and the Kirchoff formula, see section 6.

We would like to end this paper with a quote from Julian Schwinger which best describes George Green and
his work:

What, finally, shall we say about George Green? Why, that he is, in a manner of speaking, alive,
well, and living among us. [15], p. 11

Data availability statement

All data that support the findings of this study are included within the article (and any supplementary files).

Appendix

To derive Green’s third vector identity from his second vector identity, we substitute Q = gC, where Cis an
arbitrary constant vector and gis defined by (6), into (5) to obtain

C'f(gAPfPAg)d3Q:f N-[gCx V x P — P x V x (¢C)]d
Q o0

fcC- f [(V - P)gN — (N - P)Vg]d. (A1)
o0
To develop the first term on the RHS of (A.1) further, we make use of two vector identities
P
N - [¢C x V x P]:gc.g—NHN-P)(c.vg)—N-[(C-V)(gP)] (A.2)
and
N-[P x V x (gC)] = (C - P)g—il +(C-N)gV-P—(C-N)V - (gP). (A.3)

These vector identities are esoteric when written in the Gibbs notation. However, they follow naturally in the
tensor notation by writing the cross-products on the LHS in terms of the Levi-Civita symbols and using the well-
known identity e ghtm — §ligm — §mi§t where €jjiis the Levi-Civita symbol and 6 is the Kronecker symbol.

6
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For example, from the LHS of (A.2) we have
N:-[gCx V xP] = gNiEijijEk'meme =gC- g_]l\)] - NiCjVjPi

and after using the product rule gV;P, = V;(gR) — P, Vg we obtain the RHS of (A.2). Substituting (6), (A.2) and
(A.3)into (A.1) and noting that the resultant equation must hold for an arbitrary constant vector C we obtain

oP 0g P@’) forr' € Q
T _pBlea- [gardo+ 0= , Ad
faQ (gaN aN) fg § * {0 fort' & Q S
where
o= f (NiZ'Vi — NIZ'V) (gP) dX. (A.5)
o0

Finally, using the divergence theorem on the RHS of (A.5) yields
0= [ Zi(WV, - GWEPIEQ =0 (A.6)
179}

because the covariant derivatives commute (the Riemann—Christoffel tensor vanishes) in Euclidean space [16],
Section 12.6.
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