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Abstract
Green’s theorem andGreen’s identities are well-known and their uses span almost every branch of
science andmathematics. In this paper, we derive a vector analogue ofGreen’s three scalar identities
and consider some of their uses.We also offer a number of historical tidbits in connection to thework
ofGeorgeGreen.

1. Introduction

In 2028, it will be exactly two centuries sinceGeorgeGreen, a self-taughtmiller ofNottingham,wrote his
revolutionary essay titledAnEssay on the Application ofMathematical Analysis to the Theories of Electricity and
Magnetism [1]. In the first part of the essay, Greenwrites:

LetU andV be two continuous functions of the rectangular co-ordinates x, y, z, whose differ-
ential co-efficients do not become infinite at any point within a solid body of any formwhatever;
thenwill

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠ò ò ò òd s d s+ = +dx dy dz U V d U

dV

dw
dx dy dz V U d V

dU

dw
;

the triple integrals extending over thewhole interior of the body, and those relative to dσ, over its surface, of
which dσ represents and element: dw being an infinitely small line perpendicular to the surface, andmeasured
from this surface towards the interior of the body [δ denotes the Laplacian operator!]. [1], p. 23The above
equation, whichGreen proves via integration by parts, is what we now callGreen’s second identity orGreen’s
theorem. The importance ofGreen’s second identity in the exact sciences cannot be overstated.Without a doubt,
the reader of this journal has seenGreen’s second identity in at least one scientific subfields such as
electromagnetism, fluidmechanics, acoustics, quantumfield theory or even the theory of functions of a complex
variable.However, the readermay be unaware of the vector analogue ofGreen’s second identity even though it
has been available since at least 1913 [2], p. 182. Recently, Fernández-Guasti pointed out that the vector version
ofGreen’s second identity is not readily available even in specialized literature [3]. To remedy this situation,
Fernández-Guasti performs a rather cumbersome derivation ofGreen’s second vector identity by explicitly
restricting the derivation to aCartesian coordinate system [3].

In this paper, we deriveGreen’s second vector identity as a natural consequence of his first vector identity.
Green’s third vector identity can be derived fromhis second identity but the derivation is somewhat
sophisticated because it requires the covariant derivatives to commute. Therefore, tomake this paper appealing
to a larger audience, we present a simple alternative derivation in the body of the paper and defer the
sophisticated derivation ofGreen’s third vector identity to the Appendix. In order not to restrict Green’s three
vector identities to aCartesian coordinate system,we use some elementary elements of tensor calculus that
should be familiar to the reader from a typicalmath-methods course or electrodynamics course, e.g., see [4],
Ch. 2 and [5], Ch. 11, respectively. Having established a vector analogue ofGreen’s three identities, we consider
their application to the vector Laplace andHelmholtz equations [6]. Furthermore, we point out some erroneous
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and/ormisleading statements in the literature in connectionwithGreen’s second vector identity and vector
diffraction theory.

2. Background review andnotation

Weonly consider a simply connected finite volumeΩwith a smooth boundary∂Ω and denote the differential
volume and differential surface element by d3Ω and d2Ω, receptively. The outward unit normal to∂Ω is denoted
byN, see figure 1.

The coordinates of a source point in the three-dimensional Euclidean space are denoted byZ1,Z2,Z3 or simply
byZ, and theposition vector is denotedby r= r(Z). Thus, the covariant ambient basis vectors are given by

( )=
¶
¶

=
Z

Z iZ r for 1, 2, 3.i i

For example, in the usual Cartesian coordinate system (x, y, z)we simply have ˆ ˆ ˆ= = =Z x Z y Z z, ,1 2 3 and in
the spherical coordinate system (r, θ,f)wehave

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ
q

f

q f q f q

q f q f q

q f q f q

= + + º

= + - º

=- + º

r r r r

r r r

Z x y z r

Z x y z

Z x y

sin cos sin sin cos ,

cos cos cos sin sin ,

sin sin sin cos sin .

1

2

3

Throughout the paper, we use tensor notationwith the Einstein summation convention, where the Latin
alphabet indices range from1 to 3. In this notation, an arbitrary vectorAmay bewritten asA= AiZi= AiZ

i,
whereAi andAi are the contravariant and the covariant components of the vectorA. The covariant basisZi are
related to the contravariant basisZi viaZi= ZijZ

j, whereZij= Zi · Zj is the fundamental tensor. For example, in a
Cartesian coordinate system, the fundamental tensor is simply the identitymatrix and in the spherical
coordinate system it is given by

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥q

=Z r
r

1 0 0
0 0
0 0 sin

.ij
2

2 2

The covariant derivative is denoted by∇i and the contravariant derivative by∇
i. Of course, the two are related

via∇i= Zij∇
j and in theCartesian coordinate system,we have∇1=∇1= ∂/∂x,∇2=∇2= ∂/∂y,

∇3=∇3= ∂/∂z. The divergence of the vector fieldA is given by∇ · A=∇iA
i=∇iAi and the Laplacian by

!A=∇i∇
iA. An important property of the covariant and contravariant derivatives is that they aremetrinilic

with respect to the basis, i.e.,∇iZj= 0 and∇iZj= 0. The divergence theorem is given by

( )ò ò W = W
W ¶W

A N Ad d , 1i
i

i
i3 2

whereNi are the covariant components of the outward unit vectorN, see figure 1.Wewillmake extensive use of
the divergence theorem in the derivations and applications ofGreen’s vector identities. Thus, it is of benefit to
consider a simple intuitive example. Intuitively it is clear that ∫∂ΩN d2Ω= 0 for any closed surface∂Ω because a
body placed in a uniform pressure field remains at rest. To see thismathematically, we apply (1) and use the
metrinilic property to obtain

ò ò òW = W =  W =
¶W ¶W W

NN Z Z 0d d d .i
i

i
i

2 2 3

Figure 1.VolumeΩwith boundary∂Ω and an outward unit-normalN are shown.
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3.Green’sfirst vector identity

ToderiveGreen’sfirst vector identity, we look at theU!V termon the left-hand side (LHS) ofGreen’s second
identity quoted in section 1 and consider a relatively obvious ansatzP ·!Q. Substituting thewell-known vector
identity ( · )=   -  ´  ´Q Q Q into the ansatz and using the vector identity · ( ) ´ =A B

· ( ) · ( ) ´ -  ´B A A B withA= P andB=∇×Q yields

· · ( ) ( ) · ( ) · [ ( · )] ( )=  ´  ´ -  ´  ´ +  P Q P Q P Q P Q . 2

The last termon the right-hand side (RHS) of (2) is the root cause of the agony in the derivation by Fernández-
Guasti [3]. To avoid the agony, we re-write it in tensor notation and use the product rule to obtain

· [ ( · )] [ ( )]
[ ( )] ( )( )
· [ ( · )] ( · )( · ) ( )

  =  

=   -  
=   -  

P Q

P Q P Q

P Q

P Q P Q . 3

i
i j

j

i
i

j
j

i
i

j
j

Finally, substituting (3) into (2) and using the divergence theoremwe obtainGreen’s first vector identity;
namely,

· [ ( · )]

· [( ) · ( ) ( · )( · )] ( )

ò
ò ò

´  ´ +  W

= W +  ´  ´ +   W

¶W

W W


N P Q P Q

P Q P Q P Q

d

d d . 4

2

3 3

Twouseful alternative forms of the LHS of (4) can be obtained via the vector identities · ( )´ =A B C
· ( ) · ( )´ = ´B C A C A B , i.e., · [ ] · [ ] ( ) · ( )´  ´ = - ´  ´ = ´  ´N P Q P N Q N P Q .
If we setQ= P in (4), then the last integrand on theRHS of (4) is nonnegative. Thus, we can refer to the last

integral on the RHS of (4) as theDirichlet energy and expect it to play an essential role in the uniqueness proofs of
(vector)Poisson’s equation.

4.Green’s second and third vector identities

Green’s second (scalar) identity is traditionally derived fromhisfirst identity by subtracting from the first
identity another first identity with the interchanged roles ofU andV. The same procedure can be used to derive
Green’s second vector identity; interchanging the roles ofP andQ in (4) and subtracting it from (4) immediately
yields

[ · · ] · [ ]

[( · )( · ) ( · )( · )] ( )

ò ò
ò

- W= ´  ´ - ´  ´ W

+  -  W

W ¶W

¶W

 Q P P Q N Q P P Q

N Q P N P Q

d d

d . 5

3 2

2

Green’s third (scalar) identity is ordinarily derived by lettingU orV in the second identity be the free-space
Green’s function satisfying

( ) ( ) ( )d¢ = - ¢ -g r r r r, , 6

where ( )d ¢ -r r is theDirac delta function, ( )¢ = ¢Zr r is the position vector of an observation (field) point, and
! operates on the source coordinatesZ (not ¢Z ).We present this approach in the appendix becausewe prefer to
show amuch simpler approach here based directly on (6). To deriveGreen’s third vector identity from (6), we
multiply (6) byP and subtract g∇i∇

iP fromboth sides of the resultant equation to obtain

( ) ( ) ( )d  -  = - ¢ - - g g gP P P r r P. 7i
i i

Integrating (7) over the volumeΩ and using the divergence theoremon the LHS of (7) yieldsGreen’s third vector
identity

⎛
⎝

⎞
⎠

⎧
⎨⎩

( )
( )ò ò

¶
¶

-
¶
¶

W - W =
¢ ¢ Î W

¢ Ï W¶W W
g

N

g

N
g

for

for

P
P P

P r r

0 r
d d , 82 3

where the normal derivative is denoted by∂/∂N=N ·∇=Ni∇i. From (8), we see that the knowledge ofP and
∂P/∂N on the boundary∂Ω is sufficient to reconstruct a vector harmonic function (a function that satisfies!
P= 0) inside the volumeΩ.

3
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5. Application ofGreen’sfirst identity

It is common to useGreen’sfirst (scalar) identity in the uniqueness proofs of a solution to (scalar)Poisson’s
equationwith theDirichlet and theNeumann boundary conditions. To keepwith our parallel development of
the vectorGreen’s identities, we present a similar analysis of the vector Poisson’s equation, where the proof is a
bitmore intricate and the space of the boundary conditions is a bitmore vast.

LetU be a solution to the vector Poisson’s equation

( )= WU F in 9

with theDirichlet boundary conditions

( )= ¶WU L on , 10a

themagnetic boundary conditions

· ( )s´  ´ = = ¶WN U J N Uand on , 10b

or the electric boundary conditions

· ( )r´ =  = ¶WN U K Uand on . 10c

If we assume there are two solutions U
1
and U

2
that satisfy (9)with one of the boundary conditions in (10), then

= -V U U
1 2

satisfies the vector Laplace equation

( )= WV 0 in 11

with the homogeneous boundary conditions:

( )= ¶WV 0 on , 12a

· ( )´  ´ = = ¶WN V 0 N Vand 0 on , 12b

or

· ( )´ =  = ¶WN V 0 Vand 0 on . 12c

From (12b) and (12c), we see that the termsmagnetic and electric boundary conditions come from the
boundary conditions that the electric field satisfies on the surface of a perfectmagnetic and electric conductor,
respectively [7]. If we setP=Q=V in theGreen’sfirst vector identity (4) and use (11)with (12a), (12b) or (12c),
thenwe see that theDirichlet energy vanishes in all three cases, i.e.,

(∣ ∣ ∣ · ∣ ) ( )ò  ´ +  W =
W

V V d 0. 132 2 3

The functions ∣ ∣ ´ V and ∣ · ∣ V are nonnegative. Therefore, the onlyway the integral in (13) can vanish is if
we have

· ( ) ´ =  = WV 0 Vand 0 in . 14

From thefirst equation in (14), we see thatV can bewritten as a gradient of the scalar potentialψ and, from the
second equation in (14), we see thatψ satisfies Laplace’s equation, i.e.,!ψ= 0 inΩ. From (12a) and (12b) it
follows that in the case of the homogeneousDirichlet andmagnetic boundary conditions we have the
homogeneousNeumann boundary condition onψ, i.e.,∂ψ/∂N= 0 on∂Ω. It is well-known fromGreen’sfirst
(scalar) identity that theNeumann problem is unique up to a constant. Thus,V= 0 and the solution (if it exists)
to the vector Poisson’s equation is unique providedwe have theDirichlet ormagnetic boundary conditions.

In the case of the homogeneous electric boundary conditions, the situation ismore difficult because after
applyingGreen’sfirst (scalar) identity we obtain

∣ ∣ ( )ò òy y
y

 W =
¶
¶

W
W ¶W N

d d 152 3 2

instead of ∣ ∣ò y W =
W

d 02 3 . To proceed further, we decompose the gradient operator into the tangential and

normal parts to obtain

( )å =  +
¶
¶a

a
a

= N
S N , 16

1

2

where Sα are the covariant basis tangential to the surface∂Ω and∇α is the surface contravariant derivative.
Substituting (16) into thefirst equation in (12c) and noting that Sα andN are orthogonal yields

4
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( )å y =
a

a
a

=

S 0. 17
1

2

From (17)we see thatψ is constant on the surface∂Ω, and therefore,ψmay be taken out of the surface integral in
(15) to obtain

∣ ∣ ( )ò òy y
y

 W =
¶
¶

W
W ¶W N

d d . 182 3 2

After applying the divergence theorem to the second equation in (14)we see that the surface integral of the
normal derivative ofψ vanishes. Therefore, the RHS of (18) also vanishes andwe conclude thatψmust be
constant inΩ. Thus,V= 0 inΩ andwe see that the solution (if it exists) to the vector Poisson’s equationwith the
electric boundary conditions is unique.

6. Application ofGreen’s second and third vector identities

Perhaps one of themost important theorems in electromagnetic wave diffraction or in antenna theory is the
Stratton–Chu formula [8]. This formula is sometimes also called the vector Kirchhoff formula, presumably
because it can be directly derived from the scalar Kirchhoff formula.However, Baker andCopson object to such
a derivation;

To deal with radiation, it is in fact necessary to have recourse to the electromagnetic theory of
light.Whilst it is true that Kirchhoff’s formula can be applied to each of the components of the
electric andmagnetic vectors, this does not constitute a valid formulation ofHuygens’ principle
as it possesses no physical interpretation. [9], p. 102

Baker andCopson derive what they call the Larmor–Tedone formula (Stratton–Chu formula) by following
E. T. Whittaker’s notes, whichwere presumably based on thework of Larmor andTedone. Judging by the
citation on page 106 in [9] it does indeed seem that Larmor andTedone derived the formula circa 1917, i.e., over
two decades before Stratton andChu. Tai points this out and suggests that:

[...] presumably because of the simplicity withwhich Stratton andChu derived their formula, the
formula bears the names of the two authors. [10], p. 104

However, this is doubtful because eight years earlierMurray [11] independently derived the Stratton–Chu
formula via a simple application ofGreen’s second vector identity. Furthermore, judging from thework of
Hasenöhrl [12], it is reasonable to assume that at least some formof the Stratton–Chu formulawas known
since 1906.

Inmodern literature, there is still a disconnect between the Stratton–Chu formula derived via Green’s
second vector identity and via theKirchhoff formula. The derivations are unnecessarily restricted to a Cartesian
coordinate system and thereby implicitly or explicitly convey to the reader that the two are only equivalent in a
Cartesian coordinate system; e.g., see [5], §10.6 for theCartesian restricted derivation of the Stratton–Chu
formula from the scalar Kirchhoff formula and [13] for theCartesian restricted reduction of the Stratton–Chu
formula to theKirchhoff formula.We address this disconnect below.

Assume that allfields are harmonic in timewith the suppressed time factor ( )w- texp i , whereω is the
angular frequency, t denotes time, and º -i 1 . Furthermore, if we assume the source-free volumeΩ can be
characterized by the complex constants ò (permittivity) andμ (permeability), then fromMaxwell’s equations we
have

( )mw ´ = W ¶WE Hi in and on , 19a

· ( ) = W ¶WE 0 in and on , 19b

and

( )+ = W kE E 0 in , 19c2

where thewavenumber mw= k ,E denotes the electric field, andH denotes themagneticfield. The free-space
Green’s function, ( )¢G r r, , to the vectorHelmholtz equation (19c) is defined by

( ) ( ) ( ) ( )d¢ + ¢ = - ¢ -G k Gr r r r r r, , . 202

Similarly to our derivation ofGreen’s third vector identity in section 4, wemultiply (19c) byG and (20) byE, then
apply the divergence theorem to the difference to obtain

5
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⎛
⎝

⎞
⎠

⎧
⎨⎩

( )
( )ò

¶
¶

-
¶
¶

W =
¢ ¢ Î W

¢ Ï W¶W
G

N

G

N

for

for

E
E

E r r

0 r
d . 212

Notice that (21) is essentiallyGreen’s third vector identity with the free-spaceGreen’s function for theHelmholtz
equation instead of for the Laplace equation, i.e., ( )¢G r r, instead of ( )¢g r r, . Furthermore, notice that in a
Cartesian coordinate system, (21) yields the scalar Kirchhoff formula for each rectangular component; however,
(21) is not restricted to theCartesian coordinate system.

It is difficult to see directly from (21) that it is equivalent to the Stratton–Chu formula in Euclidean space.
Thus, wewill show this equivalency in an indirectmanner. SubstitutingP= E andQ=GC, whereC is an
arbitrary constant vector, intoGreen’s second vector identity (5), then using 19, (20), and the vector identity

· { [ ( )]} · [( ) ]´  ´ = ´ ´ G GN E C C N E

yields the Stratton–Chu formula, namely,

⎧
⎨⎩

[ ( ) ( · ) ( ) ] ( ) ( )ò mw- ´ +  + ´ ´  W =
¢ ¢ Î W

¢ Ï W¶W
G G GN H N E N E

E r r

0 r
i d

,

,
. 222

However, substitutingP= E andQ=GC intoGreen’s second vector identity (5), then proceeding as in the
appendix yields (21). Therefore, we see that the Stratton–Chu formula is indeed equivalent to (21). Of course, it
is possible to directly reduce the Stratton–Chu formula (22) to (21). This is done explicitly in sectionVof [14].
Finally, we remark that the fact that the covariant derivatives commute (the Riemann–Christoffel tensor
vanishes) in Euclidean space is essential to establishing the equivalency between (22) and (21).

7. Summary

Wederived threeGreen’s vector identities given by (4), (5), and (8). The derivationswere performed in a natural
waywithout restricting ourselves to a Cartesian coordinate system.WeusedGreen’sfirst vector identity to show
the uniqueness of a solution to the vector Poisson equation underDirichlet,magnetic, and electric boundary
conditions, see section 5. Furthermore, we usedGreen’s second and third vector identities to address the
equivalency of the Stratton–Chu formula and theKirchoff formula, see section 6.

Wewould like to end this paperwith a quote from Julian Schwinger which best describes GeorgeGreen and
his work:

What,finally, shall we say aboutGeorgeGreen?Why, that he is, in amanner of speaking, alive,
well, and living among us. [15], p. 11

Data availability statement

All data that support thefindings of this study are includedwithin the article (and any supplementary files).

Appendix

ToderiveGreen’s third vector identity fromhis second vector identity, we substituteQ= gC, whereC is an
arbitrary constant vector and g is defined by (6), into (5) to obtain

· ( ) · [ ( )]

· [( · ) ( · ) ] ( )

ò ò
ò

- W= ´  ´ - ´  ´ W

+  -  W

W ¶W

¶W

 g g g g

g g

C P P N C P P C

C P N N P

d d

d . A.1

3 2

2

Todevelop thefirst termon the RHS of (A.1) further, wemake use of two vector identities

· [ ] · ( · )( · ) · [( · )( )] ( )´  ´ =
¶
¶

+  - g g
N

g gN C P C
P

N P C N C P A.2

and

· [ ( )] ( · ) ( · ) · ( · ) · ( ) ( )´  ´ =
¶
¶

+  - g
g

N
g gN P C C P C N P C N P . A.3

These vector identities are esoteric whenwritten in theGibbs notation.However, they follow naturally in the
tensor notation bywriting the cross-products on the LHS in terms of the Levi-Civita symbols and using thewell-
known identity ℓ ℓ ℓe e d d d d= -ijk

k m m mi j i j, where εijk is the Levi-Civita symbol and d ij is the Kronecker symbol.

6
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For example, from the LHS of (A.2)we have

· [ ] ·ℓ
ℓe e´  ´ =  =

¶
¶

- g gN C P g
N

gN C PN C P C
Pi

ijk
j k m

m
i j

j i

and after using the product rule ( ) =  - g P gP P gj i j i i j we obtain theRHS of (A.2). Substituting (6), (A.2) and
(A.3) into (A.1) and noting that the resultant equationmust hold for an arbitrary constant vectorCwe obtain

⎛
⎝

⎞
⎠

⎧
⎨⎩

( )
( )ò ò

¶
¶

-
¶
¶

W - W + =
¢ ¢ Î W

¢ Ï W¶W W
g

N

g

N
g

for

for

P
P P

P r r

0 r
d d , A.42 3

where

( )( ) ( )ò=  -  W
¶W

 N N gPZ Z d . A.5i
i j j i

i j
2

Finally, using the divergence theoremon the RHS of (A.5) yields

( )( ) ( )ò=  -  W =
¶W

 gPZ 0d A.6i
i j j i

j 2

because the covariant derivatives commute (the Riemann–Christoffel tensor vanishes) in Euclidean space [16],
Section 12.6.
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