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Abstract—An antenna’s practical far-field distance can be
estimated from the upper bound on the ratio of its gain to
quality factor. This upper bound is an infinite series that can
be truncated based on the desired accuracy. We investigate the
convergence properties of this bounding series. We find that
the number of terms required for convergence depends on the
antenna’s electrical radius in a way similar to the Wiscombe
criterion used in Mie scattering theory. For typical experimental
accuracy requirements, such convergence can significantly reduce
the effective far-field distance.

I. INTRODUCTION

In antenna metrology, knowledge of where the far-field
behavior of an antenna begins is of paramount importance.
In principle, the far-field pattern of an antenna or an antenna
array is fully formed only at infinity. In practice, however,
the angular field distribution of the radiated wave becomes
essentially independent of the distance from the antenna at
some finite effective far-field distance (EFFD). Of course,
different portions of the angular field distribution exhibit
different EFFD. The EFFD for the main lobe of the angular
field distribution is shorter than the one for the side lobes
[1], [2]. Furthermore, within a given accuracy, the EFFD
for the main lobe can be approximated from the number of
partial waves (modes) required to describe the radiated wave
in the vector spherical harmonics basis. There are numerous
approaches available to estimate the required number of modes
in this basis. One interesting approach is to use the upper
bound on the ratio of antenna’s gain to its quality factor to
give an estimated number of modes [3]. This upper bound is
given by an infinite sum that can be truncated after N terms
provided the remainder is sufficiently small.

In this paper, we present a systematic study of the conver-
gence properties of the above-discussed upper bound. For a
given relative error we establish the functional dependence of
N on the electrical radius of the antenna or antenna array.

II. PROBLEM STATEMENT

The upper bound on the ratio of an antenna’s gain to its
quality factor is given by [4, §4.6], [5]

w(ρ) =

∞∑
n=1

4(2n+ 1)

un(ρ) + vn(ρ)
, (1a)
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where

un(ρ) = 2ρ− ‖hn(ρ)‖2
[
ρ3 + 2(n+ 1)ρ

]
− ρ3‖hn+1(ρ)‖2

+ (2n+ 3)ρ2 [jn(ρ)jn+1(ρ) + yn(ρ)yn+1(ρ)] (1b)

and

vn(ρ) = 2ρ− ρ3
[
‖hn(ρ)‖2 − jn−1(ρ)jn+1(ρ)

−yn−1(ρ)yn+1(ρ)] . (1c)

In (1), jn (yn) denotes the spherical Bessel function of the
first (second) kind, hn denotes the spherical Hankel function
of the first or second kind, and ρ denotes the electrical
radius of the antenna. We define the electrical radius of an
antenna or an antenna array as ρ = kr, where k denotes
the wavenumber and r denotes the radius of the smallest
circumscribing sphere containing the radiating portions of the
antenna or antenna array. To study the convergence properties
of (1a) it is convenient to define

wN (ρ) =

N∑
n=1

χn(ρ), where χn(ρ) =
4(2n+ 1)

un(ρ) + vn(ρ)
, (2)

and analyze how well wN (ρ) approximates w(ρ) for different
integer values of N . It should be noted that the order of
convergence of the {χn} sequence is superlinear, i.e., faster
than linear but slower than quadratic. To see this, substitute
the asymptotic forms of the Bessel and Hankel functions for
large order but fixed argument [6, §10.19(i)] into χn(ρ) and
compute

lim
n→∞

|χn+1(ρ)− L|
|χn(ρ)− L|`

, (3)

where L = limn→∞ χn(ρ) = 0 and ` = 1, 2. The order
of convergence provides some insight into the asymptotic
behavior of χn(ρ) but it does not provide a relationship
between N , ρ, and the relative error,

ε(ρ) =

∣∣∣∣w(ρ)− wN (ρ)

w(ρ)

∣∣∣∣ . (4)

We shall establish this relationship next.



III. WISCOMBE-LIKE CRITERION FOR w(ρ)

In the theory of electromagnetic scattering by canonical
particles, one often uses the Wiscombe criterion to truncate the
infinite series of far-field quantities, such as various cross sec-
tions and (complex) scattering amplitudes [7]–[9]. Recently, in
the context of the T-matrix method, a mathematically rigorous
justification of the Wiscombe criterion has been provided by
Ganesh et al. [10]. These far-field quantities critically depend
on the asymptotic form of the scattered wave produced by the
scatterer. Similarly, w(ρ) critically depends on the asymptotic
form of the wave radiated by the antenna. Although the
physical origins of scattered and radiated waves are different,
their mathematical descriptions are very similar outside the
sphere circumscribing the wave source. Thus, intuitively, we
expect the truncation of the infinite series in (1a) to be given
by a Wiscombe-like criterion.

As a measure of accuracy, we adopt the number of sig-
nificant digits to which wN (ρ) agrees with w(ρ). We denote
this measure by d and its relationship to the relative error is
given by d ≈ − log10(ε) [11]. Furthermore, we choose N
such that it overestimates the minimum number of summation
terms required to achieve the stated accuracy by one term at the
most. In other words, either wN (ρ) or wN−1(ρ) approximates
w(ρ) to the stated accuracy.

Extensive double-precision numerical computations, which
are described in the Appendix, show that if we choose N to
be

N =
⌈
ρ+ α1ρ

1/3 + α0

⌉
, (5)

where d·e denotes the ceiling function, then wN (ρ) agrees with
w(ρ) to d significant digits for 10 ≤ ρ ≤ 1000; see Table I
for the numeric values of d, α1, and α0. The level of accuracy
afforded by (5) is useful for numerical computations but
beyond the accuracy level currently achievable in a laboratory.
In the state-of-the-art metrology laboratory at the National
Institute of Standards and Technology (NIST), a relative error
of 0.01 percent to 20 percent is more appropriate [12]. For this
level of accuracy, it is sufficient to restrict the linear growth
of N with respect to ρ to sublinear growth. Numerically we
find that wN (ρ) with

N =
⌈
ρβ + α1ρ

1/3 + α0

⌉
, 1/3 < β < 1, (6)

approximates w(ρ) to the stated relative accuracy for 10 ≤ ρ ≤
1000; see Tables II and III for the numeric values of β, α1,
α0, and the corresponding relative error ε. Furthermore, from
Tables II and III we expect β to equal 1/3 for a large enough
relative error. Indeed, this transition occurs when ε ≈ 60% and
the functional dependence of N on ρ becomes N = α1ρ

1/3+
α0. This functional dependence continues as the relative error
increases from roughly 60% to 100%.

The restriction on ρ to be between 10 and 1000 could be
relaxed if we simultaneously relax the overestimate condition
on N . If we choose N such that it overestimates the minimum
number of summations terms required to achieve the stated
accuracy by two terms at the most, then (5) and (6) hold for

TABLE I
THE VALUES OF d, α1 , AND α0 ASSOCIATED WITH (5) ARE PROVIDED.

d α1 α0 d α1 α0

5 2.2 1.7 8 3.7 1.3

6 2.8 1.5 9 4.1 1.2

7 3.3 1.3 10 4.5 1.2

TABLE II
THE VALUES OF d, α1 , AND α0 ASSOCIATED WITH (6) ARE PROVIDED.

ε in % β α1 α0 ε in % β α1 α0

0.01 0.9997 1.83 1.14 0.1 0.9983 1.19 1.20

0.02 0.9995 1.64 1.19 0.2 0.9967 1.05 1.02

0.03 0.9994 1.52 1.22 0.3 0.9952 0.97 0.88

0.04 0.9992 1.44 1.25 0.4 0.9936 0.92 0.80

0.05 0.9991 1.38 1.23 0.5 0.9921 0.87 0.76

0.06 0.9990 1.32 1.25 0.6 0.9907 0.83 0.72

0.07 0.9988 1.27 1.27 0.7 0.9893 0.78 0.71

0.08 0.9986 1.25 1.22 0.8 0.9878 0.74 0.72

0.09 0.9985 1.22 1.21 0.9 0.9865 0.71 0.72

TABLE III
THE VALUES OF d, α1 , AND α0 ASSOCIATED WITH (6) ARE PROVIDED.

ε in % β α1 α0 ε in % β α1 α0

1 0.9851 0.67 0.75 11 0.8745 −0.66 2.19

2 0.9722 0.36 1.06 12 0.8644 −0.69 2.16

3 0.9601 0.11 1.39 13 0.8543 −0.71 2.12

4 0.9486 −0.08 1.64 14 0.8443 −0.71 2.05

5 0.9375 −0.23 1.87 15 0.8343 −0.71 1.97

6 0.9266 −0.36 2.01 16 0.8243 −0.71 1.90

7 0.9160 −0.46 2.13 17 0.8144 −0.70 1.81

8 0.9054 −0.53 2.17 18 0.8045 −0.69 1.73

9 0.8951 −0.59 2.22 19 0.7946 −0.67 1.63

10 0.8848 −0.64 2.23 20 0.7847 −0.66 1.56

1 ≤ ρ ≤ 1000. Of course, for electrically small antennas, i.e.,
ρ� 1, the dependence of N on ρ is not needed because w1(ρ)
or w2(ρ) provide sufficient estimate of w(ρ).

IV. SUMMARY

We analyzed the convergence properties of the upper bound
on the ratio of antenna’s gain to its quality factor as a function
of the relative error and the electrical radius of the antenna,
ρ. Through a systematic numerical study, we showed that the
upper bound ratio w(ρ) follows Wiscombe-like dependence
on ρ for relative error below approximately 10−5. For larger
relative errors the dominant linear term in Wiscombe-like
criterion is reduced to ρβ with 1/3 ≤ β < 1.

The relative errors in typical experimental measurements
tend to be well above 10−5 and therefore, N associated
with this level of accuracy is significantly smaller than the
theoretical value of N , i.e., N such that wN (ρ) equals w(ρ)
to double-precision. Consequently, if one defines the practical
far-field distance of the antenna in terms of N , then the
effective far-field distance is significantly reduced.



APPENDIX
NUMERICAL COMPUTATIONS

To obtain the results presented in Section III we discretized
ρ in steps of 0.1 from 1 to 1000. Additionally, we truncated
the sum in (1a) at n = d2ρ + 50e to obtain a numerically-
exact estimate of w(ρ). At such a large truncation integer
the denominator in (1a) overflows because of the growth of
yn(ρ) for n � ρ. Thus, these terms in the sum underflow
and can be treated as numerical zeros. In other words, for
large enough n, the sum can be truncated and the result
should be valid to about double-precision, i.e., 15 significant
digits minus a few digits for the roundoff error. In order
to limit the roundoff error we used math.fsum method
in Python’s math module1 instead of numpy.fsum method
in the NumPy library1, because math.fsum reorders the
sum to minimize the roundoff error. The spherical Bessel
functions of the first and second kind were computed via the
SciPy library1 methods scipy.special.spherical_jn
and scipy.special.spherical_yn, respectively, and
the modulus squared of the spherical Hankel functions via
‖hn(ρ)‖2 = j2n(ρ) + y2n(ρ).

The values of α1 and α0 in (5) were first es-
timated from the ordinary least squares fit of N −
ρ = α1ρ

1/3 + α0 via the statsmodels library1 method
statsmodels.formula.api.ols. Then, the values of
α0 and α1 were truncated to the number of the significant
digits shown in Table I, and the resulting equation was man-
ually confirmed to satisfy the stated overestimation criterion
of one or two terms on the discretized set of ρ values. A
similar procedure was used to obtain β, α1, and α0 shown
in Tables II and III. However, because the dependence of
N on the fit parameter β is nonlinear, we used Levenberg–
Marquardt algorithm to perform the fit. In particular, we used
SciPy library1 method scipy.optimize.curve_fit.
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