® CrossMark
& click for up

On-grid compressive sampling for spherical field measurements
in acoustics
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ABSTRACT:

We derive a compressive sampling method for acoustic field reconstruction using field measurements on a pre-
defined spherical grid that has theoretically guaranteed relations between signal sparsity, measurement number,
and reconstruction accuracy. This method can be used to reconstruct band limited spherical harmonic or Wigner
D-function series (spherical harmonic series are a special case) with sparse coefficients. Contrasting typical compres-
sive sampling methods for Wigner D-function series that use arbitrary random measurements, the new method sam-
ples randomly on an equiangular grid, a practical and commonly used sampling pattern. Using its periodic extension,
we transform the reconstruction of a Wigner D-function series into a multi-dimensional Fourier domain reconstruc-
tion problem. We establish that this transformation has a bounded effect on sparsity level and provide numerical
studies of this effect. We also compare the reconstruction performance of the new approach to classical Nyquist sam-
pling and existing compressive sampling methods. In our tests, the new compressive sampling approach performs
comparably to other guaranteed compressive sampling approaches and needs a fraction of the measurements dictated
by the Nyquist sampling theorem. Moreover, using one-third of the measurements or less, the new compressive sam-
pling method can provide over 20 dB better de-noising capability than oversampling with classical Fourier theory.
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I. INTRODUCTION

Band limited spherical wavefunction (SW) expansions
in three dimensions (3D) and their restrictions to a sphere,
spherical harmonic (SH) expansions, have become a key
tool in many acoustics applications. Recent high-interest
applications of these series expansions range from surround
sound,'™ spherical acoustic holography,*® and acoustic
levitation”® to beam-forming/source localization,g’10 direc-
tivity characterization,'"'* ultrasonic medical imaging'*'*
and material characterization,'>'® and even electromagnetic
(EM) applications like spherical near-field to far-field trans-
formations (SNF2FFTs).!” The utility of the SW and SH
expansions is quite broad. In surround sound settings,'™
spherical acoustic holography,*® and acoustic or EM direc-
tivity characterizations,'"'>'7"2? one needs explicit knowl-
edge of the SW or SH series coefficients to reconstruct or
reproduce a given sound or EM field. A similar situation is
present in ultrasonic medical imaging,'>'* where SH series
coefficients are needed to model the shape of various organs
inside the body. The usage of SWs and SHs in crystallogra-
phy is slightly different; in this application, the SW or SH
coefficients are used to relate an easily measurable quantity
to the crystalline texture of polycrystalline material.'>'¢
Moreover, in acoustic levitation, ultrasound, and even room
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transfer function estimation,23 the need to know the acoustic
field of a device to a high level of detail presents a future
application for SW/SH characterizations, in particular,
acoustic SNF2FFTs.>* Such characterizations are especially
important for spherical arrays that are being used to generate
or characterize sound fields because minor transducer errors
in the array can lead to major performance degradation in
certain scenarios.”

Estimating the SW or SH expansion coefficients of an
acoustic field requires first taking measurements on a fixed
radius sphere using a spherical array of microphones'* or,
in the more general case, higher-order probes,24 1.e.,
extended geometry probes sensitive to high-order SH/SW
modes (m > 1 modes). From these measurements, one can
then use integral approaches''>'® or, as has become quite
common, a linear inverse problem'™ to solve for the SW
coefficients. According to the Nyquist sampling theorem,
the number of measurements M required to accurately esti-
mate a field’s coefficients in the band limited SW/SH series
scales with the square of the band limit"* (here band limit
refers to the highest degree SH/SW needed to describe the
spatial distribution of the field). Depending on whether a
classical integration or linear inverse problem is used, the
constant scaling coefficients of this quadratic relationship
can vary."'> When using a measurement probe sensitive to
only m < 1 modes, this also holds for vector SWs/SHs in
EM applications.'” For even small band limits, the number
of measurements can be time-consuming and turn into
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hundreds or even thousands of measurements."'> Thus,
characterizing an acoustic field can require many micro-
phones in a spherical array (e.g., in spherical holography,
source localization/beam-forming, directivity characteriza-
tion, etc.) or be time-consuming for using if re-positioning
the experimental apparatus (e.g., the source/receiver micro-
phone/higher-order probe or a polycrystalline material). As
a note, in EM SNF2FFTSs, measurement numbers fare even
worse since typical devices can require hundreds of thou-
sands of measurements due to their band limit and noise
requirements.'®'?

In many of the above-mentioned applications, methods
relating to sparse signal processing have been of interest to
speed up measurement times, reduce the need for many
measurement devices, or decrease the number of transducers
needed to reproduce a sound field.>®**2® When the sound
fields of interest satisfy certain properties, e.g., the sound
field is from a symmetric loudspeaker or the field has a
smooth, regular, or symmetric spatial distribution, the SW/
SH coefficients can be considered as sparse or compressible
(i.e., approximately sparse). Here, sparse means that the
coefficients contain mostly zero entries with few non-zero
values. In these cases where the coefficients are sparse or
compressible, compressive sampling (CS) can be used to
accurately solve the linear inverse problem for the SW/SH
coefficients while requiring fewer measurements than
needed in integral approaches or to make the linear inverse
problem fully determined.” > Such a reduction in the
required number of measurements can allow for reduced
measurement times and, for microphone arrays, require
fewer microphones to be used.

A. Contributions and relation to other work

To derive a CS approach for the many acoustics applica-
tions described above as well as EM applications like
SNF2FFTs, we prove a CS guarantee for a series of Wigner
D-functions. SH or SW function series are special cases of
Wigner D-function series, so the approach developed also
specializes to these two cases. Specifically, in the case where
measurements are performed by moving an “ideal” micro-
phone (measuring a perfect point of the field) to different
measurement positions or using a spherical array of “ideal”
microphones, the Wigner D-function expansion reduces to
the SH (thus SW) expansion by using only a certain subset of
Wigner D-functions. Alternatively, in the case where mea-
surements are taken using an extended non-ideal probe, the
Wigner D-function series is required unless simplifying
assumptions are made, e.g., using an ideal measurement
probe. This is a direct result of accounting for the probe’s
sensitivity to SWs in its coordinate frame and carrying out
the appropriate transformations to relate the measurements
taken and the SW expansion coefficients of interest.>* For
mathematical context, the Wigner D-functions are an irreduc-
ible representation of the symmetry group of the sphere, the
rotation group SO(3), and they form an orthogonal basis for
band limited functions on SO(3).*
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For a particular linear inverse problem, the number of
measurements required and where these measurements
should be taken are key factors in determining the success of
CS. One approach is to use experimentation or to algorithmi-
cally find measurement positions that minimize the coherence
of the measurement matrix (which depends on the number of
measurements and their positions) in the inverse problem
while remaining within constraints dictated by device proper-
ties, e.g., microphone radii, positioning accuracy, etc. For
applications using a Wigner D-function series to solve for its
series coefficients, experimentally tested approaches have
been given considerable study,'”?”>® and coherence-based
analyses have also been of interest.2%2? However, such
approaches do not establish the required number of measure-
ments, guarantee robustness to noise, guarantee robustness to
small increases in signal sparsity, or guarantee robustness to
small decreases in measurement number.

Alternatively, the drawbacks of experimentation or
coherence analyses can be avoided if the measurement
matrix satisfies certain properties. Conventionally, the
robust nullspace property (RNP) guarantees methods like
quadratically constrained basis pursuit (QCBP) produce
accurate solutions for the unknown signal. A sufficient con-
dition that provides strong guarantees for satisfying the RNP
is a measurement matrix that satisfies the restricted isometry
property (RIP). Verifying the RIP for a given measurement
matrix is NP-hard.>®> Due to this fact, probabilistic
approaches showing that a measurement matrix satisfies the
RIP with high probability are normally used.”*>**° Such
approaches have been used to give RIP-based results for
Wigner D-functions.?**° The drawback of the existing prob-
abilistic RIP-based guarantees, however, is that they require
sampling at arbitrary random positions on SO(3) to get
robust theoretical guarantees. This requirement can be diffi-
cult or impossible for most measurement systems or micro-
phone arrays; arbitrary points can be too close physically in
multi-probe systems and highly time-inefficient in single
probe systems. This situation contrasts with the coherence-
based methods like those in Refs. 20-22, where hard/
impossible measurement patterns can be deliberately
excluded from use.

In this article, we develop a CS method to estimate
Wigner D-function series expansion coefficients where mea-
surements are taken randomly from a fixed grid. Moreover,
this CS method has robust theoretical guarantees specifying
the number of measurements needed and bounding the error
of the estimated coefficients. Thus, our work negates the
problematic need for sampling at arbitrary positions in space
as present in existing approaches?>*** and gives stronger
and more prescriptive theoretical guarantees than
coherence-based analyses. Thus, we show that CS guaran-
tees can be applied to the linear inverse problem arising
from solving for the Wigner D-function coefficients without
arbitrarily positioned measurements on SO(3). Additionally,
our approach requires fewer measurements than the classical
Nyquist sampling theorem requires. To the best of our
knowledge, this is the first result giving theoretical
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guarantees for CS recovery of the coefficients in a series of
Wigner D-functions where measurements are selected from
a fixed grid on SO(3) (sphere in the SW/SH special cases).

B. Outline of results

In the present article, we provide a method to apply CS
to recover the coefficients of a series of Wigner D-functions,
and thus SW or SW series, that only requires selecting sam-
ples from a pre-defined grid on SO(3) (sphere in the special
case of SWs/SHs). In this problem, we assume that the field
measured, w(a, f3,7), can be written as a band limited series
of the Wigner D-functions. The arguments «, f, and y
parametrize a point in SO(3) corresponding to a physical
position where the field can be measured. In this setup, o
and y are 2n periodic, while f is typically taken to be
in [0,7]. It is well known, however, that the Wigner D-
functions naturally possess a periodicity when taking
B € [0,2m).*® Moreover, this periodicity is captured in a
well-known Fourier expansion for the Wigner D-
functions.!” Thus, the approach we take to solve for the
coefficients of a Wigner D-function series is to utilize this
natural domain extension, periodicity, and Fourier expan-
sion. Since we assume w(a, f3,7) is a series of Wigner D-
functions, the periodic extension of the Wigner D-function
naturally induces one in w and makes w periodic in all of its
arguments by letting f§ be in [0,27). This domain extension
takes the function w on SO(3) and maps it to the 3-torus T°,
which is a double cover of SO(3).

Now considering the periodically extended Wigner D-
functions and w(a, f8,7), we transform the problem to the
Fourier basis. This allows us to treat the solution of the
Wigner D-function inverse problem as a multi-dimensional
discrete Fourier transform (DFT) problem. Moreover, this
transformation is carried out in a way that preserves impor-
tant sparsity structures in w. In this multi-dimensional DFT
form, we can then sample a subset of the positions to
achieve CS for the band limited series of Wigner D-func-
tions (see Theorem 7).

In a bit more mathematical detail, we start with the
problem of solving for the vector @ from the inverse
problem,

w = Opa +1, &)

where w is the vector of measurements of w(a, f3,7) at a set
of points (%, ;,7;) € SO(3), @p is the measurement matrix
whose rows contain the Wigner D-functions D" («;, B;s yj),
a is the vector of coefficients in the Wigner D-function
series for w(o, f5,7), and # is additive measurement noise.
Here, we have standard ranges for the arguments of the
Wigner D-function, o € [0,2x), ff € [0, 7], and y € [0,27).
Note that the Wigner D-functions relate to the spherical
harmonics in a form like D!(a, B,y) = 'Y, *(B,«) or
DY (a, B,7) = ™Y, ™ (B,7), where the ¢ coefficients are
constants depending on its indices.”® Thus, SW/SH series
can be considered a special case of (1).
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Without making any further assumptions beyond
w(a, f5,7) being representable as a series of Wigner D-func-
tions, we recognize that if we extend f to be in [0, 27), the
Wigner D-functions in ®p become periodic in all three argu-
ments («, 8,7).°® With this periodic domain extension,
instead of («, ,7) being on SO(3), they are taken to be on
T3. Since w(a, f8,7) is the Wigner D-function series with
coefficients in a, w(a, f8,7) also becomes periodic. In terms
of measurements, this amounts to letting the polar angle of
measurements wrap completely around the sphere on which
measurements are taken. For a spherical microphone array,
this is a reinterpretation of the existing microphone posi-
tions. Each microphone would have one position with
0 < ff < 7 and a second position with 7 < f§ < 27, As dis-
cussed later, this means the measurements from a specific
microphone may be used twice. Additionally, for a high-
order probe like those in Refs. 17 and 24, the domain exten-
sion means the second rotation in the set of Euler rotations
in the zy'z’ convention is extended to a full 27 range. With
these physical pictures in mind, the periodicity of w(a, f3,7)
with an extension in § becomes more intuitive. Note that the
periodic extension of the domain and resulting re-use of
measurements can appear at first glance to not benefit the
prospects of CS. In particular, prospects would not improve
because it would merely add repeated rows to the measure-
ment matrix in (1). However, we do not argue to use the
Wigner D-function domain problem as is; rather, we pro-
pose transforming the problem to the spatial Fourier domain.
In this alternative formulation, these physically identical
measurements will constitute distinct rows of a new mea-
surement matrix.

Due to the periodicity of the Wigner D-functions, there
is a transformation, which we denote with B, that takes the
problem from a Wigner D-function basis with arguments
o, f3, y € [0,27) to the Fourier series basis. That is, we can
write the problem as

w = ®pb + 1, )
b = Ba, 3)

where ®p = ®pB. Here, ®r is the measurement matrix
whose rows contain the basis functions for the three-
dimensional Fourier series, and b is the vector containing
the Fourier coefficients for w on T°. Fortunately, the B
matrix derives from the well-known Fourier expansion for
the Wigner D-functions and can be computed directly from
the Wigner D-functions. Importantly, it is the case that B is
well-conditioned and increases the sparsity level of the
problem in a bounded way in situations where the sparsity
comes from the field coefficients using a few m, u subspaces
or only low-frequency functions in the Wigner D-function
basis. Thus, to solve (1), we can first solve for the Fourier
coefficients b and then solve for the Wigner D-function (or
SW/SH) coefficients a. When one is simply interested in the
special cases of SW or SH series, this directly gives the
coefficients desired. For high-order probes (e.g., in
SNF2FFTs), a can be used to calculate the SW coefficients
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of the speaker/emitter after factoring out the appropriate
transformation information.'”-**

In the above, we transformed the problem in (1) from a
Wigner D-function series on SO(3) to a Fourier problem on
T3. If we suppose that measurements are taken at a selection
of points from an equiangular grid covering T at the
Nyquist rate [which is also a Nyquist sampling on SO(3)],
then ®r becomes a sub-sampled three-dimensional DFT
(3DDFT) matrix. We denote the 3DDFT matrix as Up.
Since the measurements form a sub-sampled 3DDFT, we
can write the problem as

w = PqoUrb + 1, 4)

where Pg is the matrix selecting a subset of M rows from
Up. With the problem in (1) cast in this way, we can
apply standard CS recovery guarantees for sub-sampled
unitary measurement matrices.”> Thus, we achieve com-
pressive measurements from a sub-selection of measure-
ments from a pre-defined grid on T* [and so SO(3)]. To
get these robust reconstruction guarantees from CS, the
number of measurements, M, must scale as (see
Corollary 12.38 of Foucart and Rauhut®® and our main
result, Theorem 7)

M Z éSF 1n4<N1:), (5)

where N is the size of the band limited three-dimensional
Fourier basis, s is the sparsity in this basis, and C is a con-
stant. Transforming this equation for M into a form depend-
ing only on Wigner D-function basis information, one gets a
worst-case scaling of (see Theorem 7 and Remark 8)

M > C'NPspin*(Np), (6)

=~ . . . .
where C is a constant, sp is the sparsity in the Wigner D-
function basis, and Np, is the size of the Wigner D-function
basis.

C. Structure of this paper

The remainder of this paper is structured as follows.
Section ID provides the notation used throughout the
paper. Section II contains the background information on
the Wigner D-functions and field measurements in the
general case of using high-order probes in Sec. II A along
with the results we need from the CS literature in Sec.
IIB. Section III then gives the transformation of the
inverse problem in (1) from the Wigner D-function formu-
lation to the Fourier formulation as well as the CS guaran-
tees for this problem with the gridded sampling of T°>. We
follow with numerical examples in Sec. IV. This section
includes investigations into the effect that transforming
from the Wigner D-function formulation to the Fourier
formulation has on the sparsity of the coefficient vector,
Secs. IV A and IV C, and then examples of CS recovery in
the Fourier formulation, Sec. IV D. Last, we provide a
conclusion in Sec. V.
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D. Notation

Throughout this paper, we use the following notation

and conventions. The sum >/ . is used to mean

> omen Do Yom——n- We use i = v/—1 as the unit imagi-
nary number. An overline represents complex conjugation,
e.g., a. We represent the Hermitian conjugate of a vector or
matrix with 7, e.g., al = a7, where T denotes the transpose
operation. The norm || - ||, is the standard ¢, vector norm.
Il - |l is either the ¢, or L, norm, which should be discernible
from context. As usual, for a vector, ||a||,, = max;(|a;|), and
for a function, ||f||, = inf{c > 0: |f(x)| < ¢ for almost every
x}. For Euler rotations, we use the zy’z" and passive transforma-
tion conventions.®® We use iid. to abbreviate independently
and identically distributed.

Il. BACKGROUND

In this section, we develop the background for our work
in the context of spherical field measurements with general
probes and also state the requisite CS reconstruction guaran-
tees from the literature.

A. Spherical field measurements and CS

When measuring acoustic fields, it is often assumed that
the transducers used are omnidirectional point receivers that
can measure the field of interest directly at their position;
see, for example, Ref. 1. However, when high-order trans-
ducers or arrays are used for measurement, there will be
inherent directional dependence on the directivity of the
field probe. To account for this property in spherical field
measurements, one must include the directionality of the
measurement device in the calculation of the field from
measurements. The directionality of the field probe can be
defined in terms of its sensitivity to SWs, called the receiv-
ing coefficients and denoted by R%. The inclusion of this
directionality is called probe correction and is discussed in
detail in Ref. 24.

In summary, probe correction for spherical field mea-
surements is carried out as follows. First one considers the
field of interest as a band limited series of outgoing spheri-
cal waves (if a radiator is contained in the sphere of mea-
surements) or standing waves (if no source is in the sphere
of measurements). We denote this band limit as 7n,,c. As a
note, if a radiator is present, 7y, is related to the physical
size of the radiator. In the no radiator case, np,.x relates to
the frequency content in the field of interest." A coordinate
transformation is then performed so that the probe-centered
coordinate system, which lies on the surface of the sphere
enclosing the radiator, properly relates measurements to the
coordinate system centered on the radiator. This is done
using a rotation and translation. The rotation can be speci-
fied as a set of Euler rotations parametrized in the zy'z’ and
passive transformation conventions. The resulting expres-
sion for the measured field is
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=D > > a Dy (o, B + ™

n=0m=—npu=—n

where 7; are elements of the additive measurement noise 7.
Here, j indexes arguments of the Wigner D-function,
(%, Bj,7;) € SO(3), corresponding to the jth measurement
position. This relationship between the coordinates in SO(3)
and the Euler angles of measurement point j, (R;,Ry,R.r) is
given by (o, f;,7;) = (=Rz, =Ry, —R.) or equivalently
(@, Bj.7;) = (m — Ro, Ry, m — R.).”® This is depicted in Fig.
1. Additionally, D! («, f,7) is the Wigner D-function, and
its indices satisfy n € {0,1,...,nm.} and m,u € {—n, —n
+1,...,n— 1,n}. The total number of Wigner D-functions
and, thus, coefficients Np = (Bmax + 1) (20max + 1) (27max
+3)/3. The Wigner D-function is defined as

D" (e, Bry) = e di™ (e, ®)

where d"™ is the purely real Wigner d-function defined by
Sec. 4.3.1, Eq. (4), of Ref. 36,

A" (B) = (—1)*"\/Tn + m)l(n — m){(n + pi(n — o)}

min(n+m,n—p)

x Y &,

o=max(0,m—p)

2n—20+m— 20—m+p
(—1)° (cos g) ' (sin g) l

é0:(7!(rz—i-m—a)!(n—,u—a)!(/,t—m—i—a)!' ©)

The Wigner d-function’s indices satisfy the same restric-
tions as those of the D-function. The spherical harmonics
are a special case of the Wigner D-functions, given by Sec.
4.17, Eq. (1), of Ref. 36,

Za

DUT
La/ — >
R, !

FIG. 1. (Color online) Transformation to probe coordinates. The measure-
ment position of a probe is specified by three Euler angles (R.,Ry,R) and
a fixed distance to the spherical scanning surface, r,,. The device under test
(DUT) is centered on coordinate system (X4, y4,Z4), and the probe is cen-
tered on coordinate system (xp,ys,z5). To transform from the DUT to the
probe, one first rotates by R, about z,, giving (x!,yl,z]). Then one rotates
by Ry about y!, bringing the coordinate system into (x/,)/,z,). Next,
(x, ¥, 2,) is translated by r., to (x},, ¥}, z),), and a final rotation of R about
z}, brings one into (xp, Y, zp)-
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V2n+1

Vi) = (=1)" =D, " (2 .7), (10)
V2 1
V2B = Y D0 e, ). an

4n

In (7), the coefficients a'* contain the original SW
coefficients, the translation transformation information, and
the probe receiving coefficients. In particular, the a)* take a
form like " = A>" SH(rq)RE, where A are the SW
coefficients, and Sk is the translation operator for SWs with
a translation distance of r,. The explicit form of St
depends on whether the original field expansion is outgoing
or standing waves.*!

The paragraphs above set up a linear inverse problem
we wish to solve using CS. However, for CS to be a valid
approach, we must establish cases where coefficient sparsity
is a valid assumption. In cases where the field of interest is
highly symmetric with respect to the radiation coordinate
system, there will be few non-zero A, so regardless of
probe type, the a)'* will be sparse/compressible.**** In a
more specific case, if the probe is small, i.e., k;7probe is small
(where k, is the wavenumber of the field of interest and
Tprobe 18 the smallest sphere circumscribing the probe) or
highly rotationally symmetric, the R¥ will be approximately
zero for p > |1| and larger v, so again the &* will be
sparse/compressible even if the A" are not totally sparse
themselves. In contrast, in cases where an omnidirectional
receiver that directly measures the field of interest is used,
(7) is equal to the field sampled at the position j. This can be
interpreted as the translation factors multiplied by the
Wigner D-functions collapsing down to be the SW/SH
expansion for the field at the point j.** Due to this collapsing
of the series expansion, the sparsity assumption must hold
for the SW/SH coefficients AJ' directly. Note that our
method is general and does not depend on the probe selec-
tion; only the validity of the sparsity assumption does.

For comparison with our method in Sec. III, we now
give the existing scaling in the number of measurements
required to give successful and robust CS recovery for
Wigner D-functions and SHs. Note that both results require
random measurements on arbitrary positions of their
domain. For Wigner D-functions, the number of such mea-
surements must satisfy (see Theorem 3 from Bangun et al.*?)

M > C'NYCspn*(Np), (12)

where sp is the sparsity in the Wigner D-function basis.

Here, C~’/ > 0 is constant. For the case of the sphere, i.e.,
SW/SH expansion, M has the same form of scaling but with
Np replaced with the number of band limited SHs,
Nsgp = (Nmax + 1)2, and sp replaced with the sparsity in the
SH basis, sSH,44 i.e.,
~Ia1/6 4
M > C Ngjy'ssy In* (Ngy). (13)

Though the CS guarantees mentioned above are useful
in establishing theoretical viability and requirements for
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using CS to solve (7) for its coefficients, their requisite ran-
dom sampling is problematic. As mentioned in the
Introduction, this is because many measurement systems
struggle to reach arbitrary points on SO(3) or the sphere,
and furthermore, random points on SO(3) or the sphere can
be too close together for some measurement setups and even
time-consuming when compared to regular patterns. Thus,
these CS results provide mixed gains. On one hand, they
reduce the required number of measurements. On the other
hand, they can give impossible measurement positions
(when they are too close for arrays) or increase measure-
ment times due to random positioning requirements. In con-
trast, coherence-based analyses like those in Refs. 20-22
provide regular patterns for measurements that can be car-
ried out rapidly, but these do not give strong theoretical
guarantees in the sense of prescribing a needed number of
measurements for QCBP to be successful with a guaranteed
accuracy and robustness to noise/small decreases in mea-
surement number. As we demonstrate in Sec. III, it is possi-
ble to maintain theoretical recovery guarantees while using
more regular sampling patterns on SO(3) or the sphere.

B. CS preliminaries

For our results that follow, we will need the following
definitions and results from the CS literature.
Definition 1 [best s-sparse approximation error (Ref.
35, p. 42, Def. 2.2)]. Given a vector x € CN, the best s-
sparse approximation error in the £, norm is
min
2€CY:zllo<s

os(x), = (14)

» Iz —x|,,-
Definition 2 [RIP (Refs. 22 and 35, p. 133, Def. 6.1)]. A
matrix ® € C*V satisfies the RIP of order s with constant

0 € (0,1) if the following holds for all s-sparse vectors
xeCM:

(1= 8)[lel3 < [lxc]3 < (1+3)]ll3, (15)

where the smallest ¢ denoted by J, is called the restricted
isometry constant of order s.

Theorem 3 (RIP for bounded orthonormal systems
(BOSs) [Ref. 35, p. 405, Thm. 12.31). Consider a set
of bounded orthonormal basis functions ¢, : D — C, i
€ {1,2,...,N} that are orthonormal with respect to a proba-
bility measure p on the measurable space D. Consider the
matrix ® € C"V with entries

¢ =bi(4), je{l,2,...M}, i€{l,2,...,N}

constructed with i.i.d. samples of #; from the measure p on
D. Suppose the orthonormal functions are bounded such that

(16)

,,,,,

M > Cod2K?sIn*(N), (17)

then with probability at least 1 — N""'®)_ the restricted
isometry constant &, of (1/v/M)® satisfies o, <o for
0 € (0,1). The constant Cy > 0 is universal.
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Corollary 4 (RIP for unitary matrices (BOSs) [Ref. 35,
p. 405, Thm. 12.31 and p. 405, Cor. 12.38)]. Let U € CN*V
be a unitary matrix with entries bounded from above by
K/ VN. Let ® € CM*V be the sub-matrix of U acquired by
selecting a subset of rows of size M from U uniformly at
random among all subsets of size M. If

M > Cod2K>sIn*(N), (18)
then with probability at least 1—N""3(N), the restricted
isometry constant 8, of (1/V/M)® satisfies d, < for
0 € (0,1). The constant Cy > 0 is universal.

Theorem 5 [sparse recovery for RIP matrices (Ref. 35,
p. 144, Thm. 6.12)]. Suppose that the matrix @ € CMxN
has restricted isometry constant Jp, < 4/ V41 =~ 0.6246.
Suppose that the measurements are taken with ® and are
noisy, y = ®x + 5, with ||5|| . < €. If X is the solution to

& = argmin ||z, subjectto ||y — ®z[|, < VMe, (19)
zeC
then
. O'-v(x)l
sl < € (220 ), o)

where C| > 0 only depends on 0y;.

lll. ON-GRID CS FOR SPHERICAL FIELD
MEASUREMENTS

Lemma 6 (solving for Wigner D-function series
coefficients in the discrete Fourier basis). Let w(o, f,7)
€ L,[SO(3)] have a band limit 7% so that it has the series
expansion

Nmax

DD D Dy (B

n=0 m=—n p=—n

w(a, B,7) =

Let w € C" be the vector of M measurements of the periodic
extension of w(x, f,7) taken on even Nyquist grid in T?
(2nmax + 2 samples in each dimension). Assume these samples
are corrupted by the additive measurement noise, 1 € cM,
Then the coefficients of the Wigner D-function series expansion,
ay'*, can be estimated using the following two-step method:

(1) Solve for the vector b € C'* with Ny = (2nmax + 2)3
using the linear inverse problem
NPw = Upb + N; 'y, 1)

where Up € CYVr s the unitary matrix representing

the normalized 3DDFT having 25y, + 2 samples in
each dimension.

(2) Using b from step 1, solve for the coefficients a,* by
solving the linear inverse problem

b = Ba, (22)

where a is the vector of a/'* and B can be written as a
block matrix with blocks B™* that only operate on the
coefficients a)'* with fixed m and p.
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Proof: See the Appendix.

With Lemma 6 set up so that the inverse problem in (7) is
reformulated as a linear inverse problem with a unitary mea-
surement matrix, (21), and the auxiliary problem (22), we state
the CS guarantee for the problem the Fourier basis, (21). The
SW/SH version of this result is stated in Remark 11.

Theorem 7 (sparse recovery for spherical field mea-
surements using a sub-sampled 3DDFT). Consider the linear
inverse problem specified in (21). Suppose that ||N;1/ 2nHOC
< ¢, Pq is the matrix that selects a subset Q of the rows of
Ur. If Q is selected uniformly at random from all subsets of
size M with

M > CaspIn*(Np), (23)

—In®(Ng)

then with probability 1 — (Np) ,if b’ is the solution to

b = arg min ||z||,
zeCNF

subject to HN;]/ZW — PqUrz||, < VMe, (24)
then
A v)
yob), <o (2 ). 25
|| HZ = L1 < \/S_F +e ( )

Here, C; > 0, and C; only depends on the restricted isome-
try constant of PoUpr, da;,.
Proof: Note that U can be written as a Kronecker product

of one-dimensional DFT matrices, Upgr € C2mat2 That is,
Ur = Uprr ® Uprr @ Upgr. The elements of Upgr are of the
form ¢ 17 /20 + 2 with 0 € R. Thus, the elements of Uy
satisfy  |[Ur];| = |ei(01+02403) /v (2”‘“ax+2)3| < NF_W. Pairing

this fact with the unitarity of Uy and then using Corollary 4 and
Theorem 5 gives the desired result. |

Remark 8. Changing our problem in (7) from the Wigner
D-function basis to the Fourier basis results in a change in
sparsity. This is because multiplying by B”* sums the entries
of a}'* along n. Typically, due to symmetries of the field and
probe, a device’s coefficients only use a few m, u subspaces. If
the number of such subspaces used is n,,,, then the worst-case
sparsity of &', sg, 1S (2nmax + 2) 1, = (NF)I/?)an. So the
required number of measurements is

1/3

M > CoN "1y In* (N). (26)

Moreover, we know n,,, < sp, where sp is the sparsity in
the Wigner D-function basis. Noting that we can relate Np
to Np as Ny < C'Np (set C' = 6, for example), we can also
use the condition

M > C5(C'Np)"Psp In*(C'Np). 27)

When comparing the scaling of M in the Fourier basis to the
Wigner D-function basis (12), we have (ignoring log fac-

tors) N 11)/ ’

basis, we gain a factor of Nll)/ 6, which is slightly worse.

and Nll)/ 6, respectively. By going to the Fourier
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However, the method presented here does not require sam-
pling from arbitrary points on SO(3); it sub-samples the
Nyquist grid, which is much easier for measurement devices
to achieve. As a further note, the structure of the B”* is such
that this worst-case increase in sparsity when transforming
from the Wigner D-function to Fourier basis is attained only
when @ # 0 for n = np,x. This is typically not the case, as
larger a;"* tend to be at lower n, so the bound n,,, < sp is
likely loose. Thus, in practice, we might expect better a bet-
ter scaling of M than what we see in (27).

Remark 9. For emphasis, we compare the result of
Theorem 7 to the classical Nyquist sampling approach in
EM, which uses a p = *1 probe. In the classical approach,

the number of measurements must scale with le)/ >, The

result in (27) requires that M scales with N ll)/ 3 times log fac-
tors. Ignoring the constants and log factors, this beats the

classical u = =1 Nyquist approach by a factor of Né/ 3,
Importantly, the sampling required here is to take a size M
subset of the grid on T* [and so SO(3)]. This requires
accessing a subset of the positions the classical approach
uses on the sphere enclosing a device, unlike the results in
Ref. 22, which require arbitrary positions.

Remark 10. In the proof of Lemma 6 (see Appendix),
we extended the limits of the Fourier series indices to
contain an even number of frequencies in m, u, and n'.
The purpose of this is so that the Nyquist sampling grid
given by (o, f;,7;) =21/ (2nmax+2),27k / (2nmax+2),27l/
(2nmax+2)) with j,k,/€{—nmax — 1, —Hmax, -, fimax } TESUILS
in each measurement on SO(3) corresponding to two or
more measurements on T°. This implies that satisfying the
bound on M in Theorem 7 requires the number measure-
ments on SO(3) to be at most M /2. Contrast this with an
odd grid, which has no repeated points, and thus the number
of measurements needed on SO(3) is M. In more detail, the
even grid results in the points on the poles f=0 or ==
being sampled; thus, there is a degeneracy in the choice of
non-polar angles o; and y; at the poles. At f=0, any points
with «;+7y,=p for fixed p represent the same physical mea-
surement. The condition for f=m is o;+n—7,=p for a fixed
p. This fact results in 2n,y +2 repeated points in T> when a
pole is measured in SO(3). Any other non-polar points have
two repeated measurements, where (o;,f;,y;) is the same
measurement as (o +7,—f, 7, — 7).

Remark 11. Consider Lemma 6 and take the special
case where one has a set of SW/SH coefficients. Assuming
that the field is measured ideally at a point amounts to set-
ting all &/ with y # 0 or m # 0 to zero. In this case (ignor-
ing the noise), the measurements w(a;, ﬁj,yj) depend only
on (f,y;) or (%, 7;), respectively. The result is that we can
consider this special case as a two-dimensional Fourier
series after appropriate normalization. Thus, using nearly
the same analysis that results in Theorem 7, we arrive at
being able to use QCBP to solve for the non-zero entries in
b from a sub-sampled 2DDFT so long as

M > CaspIn*(Ngap), (28)
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where Nrop = (2imax + 2)2 is the number of basis functions
in the band limited 2DDFT. Carrying out the same analysis
as the above remarks and noting the worst-case sp is
2nmax + 2 = /Npap < v/C"Ngy (using say C” = 2) times
the number of m (i) subspaces used, which is at most sg;,
we can also use

M > Ca\/C"Nsyssy In*(C"Ngyr). (29)

As with the full SO(3) case, using the Fourier basis Nyquist
grid on the sphere for CS results in an increase in the num-
ber of measurements required when compared to the best
case scaling for SW/SH series of O(Nél/f). Again, however,
the Fourier method does not require being able to sample
the sphere at any arbitrary point like the method achieving
O(N;I{f) does.

IV. EXAMPLES AND NUMERICAL INVESTIGATIONS
A. Analysis of basis transformation

The transformation from the Wigner D-function to
Fourier basis in Lemma 6 will affect the sparsity of the coef-
ficients. From the form of the transformation, we can see
that this mapping is likely to increase the sparsity, but only
within already populated m, pu subspaces. This becomes
even more apparent if we look at the structure of the entries
of B,

Investigating many examples of B"* for a different m,
U, and npax reveals a common structure these matrices share.
This structure can be seen in Fig. 2, which shows that this
structure is triangle-like, with zero entries in the gray
regions and non-zero entries in the region containing the
arrows. This structure is manifest in the proof of Lemma 6

pm

B am

= Nmin N = Nmax

|[B™]
B ]

FIG. 2. (Color online) B™* structure. Shown is a depiction of the non-zero
entries of the transformation matrix from the Wigner D-function basis to
the Fourier. The triangle-like structure helps visualize how sparsity can
change between bases.
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[see (A17) in the Appendix]. However, this equation does
not give straightforward insight into how the non-zero ele-
ments behave. Our investigations show that the overall trend
is given by the two curves in the bottom of Fig. 2 paired
with their corresponding direction in the depiction of the
matrix. Pairing these diagrams, we see that rows tend to
decrease as we increase along the columns (see the horizon-
tal line), but not to zero. We also see that elements along the
lines parallel to the |m'| = n line also decay, but not to zero.

The triangle-like structure of the B”* also implies that
we can make statements about the sparsity sz in the Fourier
basis if we know properties of the ) in each m, u sub-
space, i.e., properties about the symmetry of the field or the
spatial variation of it. For example, if we know that the dif-
ferent m, u subspaces have different cutoffs in n, which we
can label n* | then the sparsity in the Fourier basis satisfies

max?
the bound
sE< > (2n +1). (30)
mp: dy* #0
As a note, the different nk for each m, p subspace can be
seen as smoothness criteria on the function w(a, f8,7) if one

takes the n7% to be decreasing with increasing || and |p|.

B. Analysis of sparsity change with random
coefficients

To get more intuition behind how the Fourier sparsity
sr depends on the Wigner D-function sparsity s, in general,
we numerically test this dependence as the basis is changed
with a band limit of n,,x = 15 for ease of computation. In
particular, we look at an analog of the case where an ideal
probe is used. This choice of probe means that the Wigner
D-function coefficients are only non-zero for y = 0. For our
analogous setup, we pick a sparsity sp, uniformly at random
set sp coefficients aj;’o =1, and then transform to the
Fourier basis and calculate sz. This is repeated for 100 trials
with each value of s and averaged over all trials for a given
sp. The results are plotted in Fig. 3. While this is not exactly
representative of typical spherical field measurements, since
the a* typically will not all be equal, Fig. 3 shows how sg

Wigner D vs. Fourier Sparsity

1000

500 1

Fourier Sparsity sg

0 1 L 1 1 L
0 50 100 150 200 250

Wigner D Sparsity sp

FIG. 3. Average sg versus sp. The average Fourier sparsity level, sg, is
shown as a function of Winger D-function basis sparsity level, sp. Wigner
D-function coefficients are randomly set to one and transformed to the
Fourier basis where the sparsity level is averaged over 100 trials.
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can begin to saturate (the maximum possible sz is 1024) and
become problematic for CS with lower s, when there is no
structure to the coefficients. As a note, this experiment is
likely to fare worse than real devices; most devices of inter-
est have some amount of symmetry or structure in regard to
which m, u subspaces are non-zero.

C. Ideal and non-ideal probe measurements
of directed speaker

In actual measurement systems, it is typical to use devi-
ces that are as ideal as possible. In many acoustic systems,
this means an ideal probe is used, and the field is measured
directly. Such probes are only sensitive to ¢ =0 SW modes
in their coordinate system. In the EM case, using an ideal
probe means that the probe is only sensitive to u = *1
SWs. Moreover, among the fields that one characterizes
using spherical field measurements, it is common to see
fields with varying levels of symmetry. For example, the
sound field radiated from a box speaker, a transducer, or a
spherical array of transducers may have varying levels of
rotational symmetry along their main beam. If this main
beam is aligned along the azimuthal axis of the measure-
ment system, then the more symmetric the field is, the lesser
the number of m # 0 SW modes that will be needed. With
this idea in mind, we investigate the change in sparsity
transforming from the Wigner D-function to the Fourier
basis for the coefficients of an example speaker at three
frequencies,

(1) Case 1 (C1): 1098 Hz;
(2) Case 2 (C2): 1400 Hz;
(3) Case 3 (C3): 1895 Hz.

These frequencies are selected so that they provide vari-
ous levels of axial symmetry as determined by the fractional
contribution the speaker’s m # 0 SW modes make to the
square of the ¢, norm of the SW coefficients.

The specific speaker we consider is driver 1 of the IEM
loudspeaker cube,* for which directivity measurement data
are openly available.*® SH coefficients for the speaker at
various frequencies are calculated using the open-source
code made available by Ahrens and Bilbao'' and Ahrens*’
(which also contains the directivity measurement data for
the IEM loudspeaker cube). This code fits the loudspeaker
measurements to a SH series with band limit 7,,,x = 17. For
ease of simulation, we truncate this data to 7,,, = 15. From
the SH coefficients, we calculate the SW coefficients a] by
dividing out the appropriate spherical Hankel function eval-
uated at the distance between the probe coordinate system
and the speaker coordinate system, 7, =0.75 m. In the orig-
inal data output from the code in Ref. 47, the main beam of
the speaker is along the negative y axis. To get the beam
along the azimuthal (z) axis of the spherical measurements,
we rotate the output coefficients using Wigner D-
functions.>® As a note, we normalize the coefficients to have
an ¢, norm of 1, i.e., Z,,,m|az”|2 = 1. The relative magni-
tudes of the SW coefficients in dB,
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am
i) Gy
n,m n

Rel.Mag. g, = 20log,

are presented in Fig. 4. As can be seen in Fig. 4, the contri-
bution of the m # 0 modes to the /; norm squared increases
with frequency. In particular, C1 has 0.45% of the signal’s
[> norm squared in the m # 0 modes, C2 has 1.05%, and C3
has a contribution of 2.22%.

The Wigner D-function coefficients for the speaker,
ay#, are a product of the SW coefficients of the source, a,

n
and the response constants, C4. That is, a)* = a}'C!. Since
the response constants also have an effect on the sparsity
and are a result of the probe, we will test the change in spar-
sity from the Wigner D-function basis to the Fourier basis
with an axisymmetric probe as well as non-axisymmetric
probes. The baseline probe we select is the ideal probe. In
the axisymmetric case for each frequency, the response con-
stants are taken to be ideal for the 1098 Hz signal and are
equal to C% = (v2n + 1/4n)hV) (krn,) with the remainder
being zero. Here, h,(,l) is the spherical Hankel function of the

SW Coefs. 1098 Hz

(dB)

m
n

Rel. Mag. a

Index m

()

SW Coefs. 1400 Hz

(dB)

m
n

Index n
Rel. Mag. a/

Index m

(b)

SW Coefs. 1895 Hz
]

(dB)

m
n

Index n
Rel. Mag. a

Index m

(©)

FIG. 4. (Color online) Source spherical wave coefficients. Shown are spheri-
cal wave coefficient magnitudes up to the band limit np,x = 15 for the IEM
loudspeaker cube driver 1 at 1098 Hz (a), 1400 Hz (b), and 1895 Hz (c).
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first kind, and k is the wavenumber of the 1098 Hz sound
field. We use this same probe for all fields, so we avoid
introducing variations in the ¢, norm of the Wigner D-func-
tion coefficients by changing the probe. For non-ideal probe
measurements, we assume the non-ideal nature of the probe
comes from the probe being more sensitive to high-order u
modes at two increased levels (specified below). This sensi-
tivity is set to be randomly selected. Thus, C1-C3 will each
have three sub-cases where the response constants will be

(a) CS = %hil)(k”ah% C" = 0 otherwise;
() €Y =20 (krgy), RCE), S(CE) ~ N(0,0.01

n n

max,|CY|), C" = 0 otherwise;

© €= (kry), R(CHY), S(C;Y) ~ N(0,0.01

max,|C%)), R(C;?),3(C;?) ~ N(0,0.001max,|C?)),
C" = 0 otherwise.

n n

To see the changes in sparsity for all of the above cases,
we compare the non-zero coefficients (to floating point
precision) sorted largest to smallest in both the Wigner D-
function basis and the Fourier basis, where each set is nor-
malized with respect to the largest coefficient in the given
basis. Explicitly, we plot the coefficient relative magnitude
in dB given by

Coefficient relative magnitude = 20log, <m> , (32)

lc1]

where the ¢;, j = 1,2, ... are the sorted coefficients in either
the Wigner D-function basis or the Fourier basis. Along
with the coefficients, it is also informative to investigate the
effect of keeping only the n. largest coefficients in a given
basis. To that end, we also plot the coefficient error normal-
ized by the actual coefficient ¢, norm squared in dB,

les, = cl?

e ) @

Normalized error(c, n.) = 101log,

where ¢ is a vector of coefficients, and c,, is the vector of
with all but the n. largest coefficients set to zero. We plot
the normalized error in the Wigner D-function basis, in the
Fourier basis, and then in the Wigner D-function basis after
keeping n, coefficients in the Fourier basis and transforming
back to the Wigner D-function basis.

The sorted coefficients and normalized errors for cases
Cla—c can be seen in Figs. 5-7. For the sake of brevity in
the main text, the corresponding plots for cases C2a—c and
C3a-c are included as supplementary files.*® If we compare
the number of non-zero coefficients for a fixed frequency
but increasing probe asymmetry, e.g., Cla—c in Figs. 5-7,
then we see the number of non-zero coefficients increases
by a factor of =<3 from case a to b and then a factor of ~5
from a to ¢, regardless of basis. These scaling factors are in
line with the scaling in the number of non-zero response
constants C'' between the cases. Thus, ideally, the asymme-
try of any probe used is small so that the additional non-zero
coefficients induced will be smaller than the SW coefficients
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FIG. 5. (Color online) Sorted coefficients and normalized error case Cla.
The coefficient relative magnitude (a) in the Wigner D-function and Fourier
bases rapidly decays initially, indicating compressibility in either basis. The
normalized error (b) drops below —30dB before all coefficients are kept in
each case, indicating CS recovery with smaller sparsities sz should give
accurate results.

one is trying to recover. This trend continues for C2a—c and
C3a—c in the supplementary material.*® Comparing the
number of non-zero coefficients as we increase sound fre-
quency but keep the same response constants by using Figs.
5-7 and the supplementary material,*® we observe that the
number of non-zero coefficients in the Fourier basis is
approximately three times that of the Wigner D-function
basis for each case. These results are much better than the
worst case, which would be an increase by a factor of
~2nmax + 1 (since one coefficient per m, u subspace in the
Wigner D-function basis can map to 2nm,x + 1 in the
Fourier basis).

In terms of the normalized error, in Figs. 5-7 and the
supplementary material,*® we see that the errors drop below
—30dB well before all coefficients are being kept. The most
important curve is the green dotted curve (keeping n,. coeffi-
cients in the Fourier basis and transforming back to the
Wigner D-function basis), since this is the most relevant
number for the method we propose. This implies that the
coefficients in the Fourier basis are compressible and CS
recovery with smaller sparsities sx should be reasonably
accurate. In fact, in all cases, we see a very rapid drop to
near —15dB or better in the first n. ~ 20 coefficients, with
slower gains in accuracy after that. Last, we note that the
Fourier transformed to Wigner D-function curves (green
dotted) have a larger tail. This is as expected from the

Valdez etal. 2249


https://doi.org/10.1121/10.0014628

Sorted Coefs. Clb

—~ 0 . v

% —— Wigner D
~ - - - - Fourier

o)

<

& -

o N
= N
5

-140 : ‘ ' : ‘
0 500 1000 1500 2000 2500
Sorted Position j
()
Coef. Error vs. Number Kept C1b

A 0 ' | ' ' '

— 225 P 7
PR R

£ 50 e N ]
& TTeeln

-8 -75 S~ T, 7
& 100 | [—— Wigner D s
g - - - - Fourier : s
) 250 Fourier Transformed to Wigner D \‘_
Z -150 : : : : —

0 500 1000 1500 2000 2500

Number of Coefficients Kept

FIG. 6. (Color online) Sorted coefficients and normalized error for case
Cl1b. The coefficient relative magnitude (a) and the normalized error (b)
show trends similar to those seen in Fig. 5, so the same conclusions apply.
Any scaling in the number of non-zero coefficients and error decay is pro-
portional to the increased asymmetry of the selected probe.

broadened tail we see when looking at the sorted coefficients
in the Fourier bases.

D. CS recovery

In this section, we demonstrate the recovery of the
sound field emitted by the IEM loudspeaker cube driver 1 at
1098 Hz by solving the two-step problem in (All) and
(A12) using CS according to Theorem 7. For this demon-
stration, we simulate noiseless measurements of the sound
field emitted by the IEM loudspeaker cube driver 1 at
1098 Hz taken by an ideal probe on the sphere of radius
ra=0.75m. Using the ideal probe implies that measure-
ments w collapse to the field value at a position on the
sphere specified by («, f5, 7) according to Fig. 1 and the asso-
ciated discussion in Sec. II (see Sec. II also for a brief dis-
cussion of this collapsing). Thus, measurements are
simulated by straightforwardly calculating the field value
for a given position on the sphere by using the SW coeffi-
cients extracted as described in Sec. IV C. As a further note,
using an ideal probe implies that the coefficients a/* are
zero for all p except 1 =0. Since these coefficients are zero
and the DFT associated with the p index is no longer
needed, the 3DDFT from Theorem 7 is reduced to a 2DDFT
as discussed in Remark 11.

We can compare the above reconstruction approach
with classical Nyquist-based measurements and the algo-
rithm from acoustics.>* In this classical algorithm, the
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FIG. 7. (Color online) Sorted coefficients and normalized error for case
Clec. Again, the coefficient relative magnitude (a) and the normalized error
(b) show trends similar to those seen in Figs. 5 and 6. Thus, the same con-
clusions apply. Scaling in the number of non-zero coefficients and error
decay is again proportional to the increased asymmetry of the selected
probe.

number of measurements is dictated by the Nyquist sam-
pling theorem, and, for the band limit ny,,x = 15, it requires
a minimum of 496 measurements for a perfect reconstruc-
tion with no measurement noise.”* In this experiment, we
randomly select 400 measurement positions, which results
in 306 unique physical measurements [due to random selec-
tions repeating points on SO(3); see Remark 10]. When
measurements are noiseless, basis pursuit, not QCBP, is
used. The reconstructed sound field along with the original
and the relative error along the ¢ = 0 axis are shown in Fig.
8. The reconstructions are plotted in terms of magnitude rel-
ative to the maximum actual field in dB,

||
34
max |F| |’ 34
By

Relative magnitude = 20 log,,

and the relative error is given in dB as

|[F — F|

35
IF] (35)

Relative error = 201log,,

As can be seen, the sub-sampled 2DDFT performs well with
the relative error near —30 dB over most of the 0 range. As a
note, using CS with SHs and random measurements on the
sphere can nearly halve the number of measurements
reduced and maintain similar accuracy, as expected when
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FIG. 8. (Color online) Near-field reconstruction. Shown is example field
reconstruction for case Cla (a) and relative error (b) using the sub-sampled
2DDFT. This reconstruction uses 306 unique measurements, while classical
Nyquist reconstruction would require 496 measurements.

comparing Theorem 7 to Ref. 34. However, the sub-sampled
2DDFT method has the advantage of being sampled from a
sub-selection of the Nyquist grid on the sphere.

E. CS recovery versus measurement number

In this section, we investigate CS recovery using the
2DDFT method developed in this paper compared to the
continuous Wigner D-function approach developed in Ref.
22 with u=0 functions only (i.e., rescaled spherical har-
monics). We do this by using each method to solve for
the coefficients in cases Cla, C2a, and C3a as we vary the
number of measurements used. In particular, we look at the
relative error in the recovered partial wave coefficients
given by

Nmax )
§ n o
‘ an a n
n,m

Relative error = — (36)

Nmax

> layf?

n,m

Here, the 51’: are the recovered SW coefficients, and a) are
the actual SW coefficients. Again, as the number of ran-
domly selected measurements and the number of unique
“physical measurements” (simulated measurements corre-
sponding to unique positions on the sphere) will be different,
we plot the relative error as a function of the average

J. Acoust. Soc. Am. 152 (4), October 2022

number of unique physical measurements over 25 trials
while varying the number of randomly selected measure-
ments in the Fourier domain. The results of this are in
Fig. 9. For each case, the 2DDFT CS and the continuous
Wigner D-function CS approaches perform similarly when
the number of physical measurements is less than 300. Over
300 measurements, however, the Wigner D-function method
improves relative to the 2DDFT CS method. This can be
explained by the fact that the Wigner D-function method
has a smaller dimension for the coefficient space, so with
high sample numbers, the problem can be close to fully
determined. Note that as the number of physical measure-
ments approaches the fully sampled Nyquist grid (496 mea-
surements), the accuracy of the reconstruction becomes
nearly perfect for the 2DDFT CS approach, as expected.

The approach in Lemma 6 and the statement of
Theorem 7 do not explicitly allow for sampling grids that
are denser than the Nyquist rate as they are written.
However, a straightforward generalization of Theorem 4
allows for a measurement matrix that is a selection of col-
umns from a unitary matrix in a larger dimension. For exam-
ple, one can choose a sampling grid that is a multiple of the
Nyquist rate, select the columns of the Fourier matrix that
correspond to the b coefficients needed in Lemma 6, giving
a tall matrix, and then consider the measurement matrix that
is a random sub-selection of rows from this tall matrix.
Going through such an analysis results in an identical scal-
ing in the number of measurements as stated in Theorem 7
and the remarks following it. Thus, we can investigate the
performance of the 2DDFT CS method as the grid density
increases.

To that end, we compare the 2DDFT CS method as a
function of the number of unique physical measurements and
increasing sample grids. It is also interesting to include in this
comparison a similarly sampled Wigner D-function-based

02DDFT CS vs. Continuous Wigner D CS

)
=
=
o
g
Lﬂ _40 L 4
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P~ gol|---ClawbCs |
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FIG. 9. (Color online) Relative error versus measurement number in cases
Cla, C2a, and C3a for 2DDFT CS and continuous Wigner D-function CS.
For each number of measurements, the relative error is averaged over 25 tri-
als. Both CS methods perform similarly for cases Cla, C2a, and C3a until
about 300 measurements, where the Wigner D-function method begins to
perform better. By this sample number, the Wigner D-function method is
close to fully determined, while the Fourier method is still under-sampled.
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approach. In particular, although there is no a priori reason
to believe using a Wigner D-function measurement matrix
sampled on the Nyquist grid should work, we can test to see
if using the same samples as the proposed CS method gives
reasonable results. To compare these, we first reconstruct
Cla by first randomly selecting measurements from the
Nyquist grid and integer multiples of it on the sphere (i.e., n
times as many available samples spatially in each direction).
We use these samples to carry out the 2DDFT CS method.
Then we reconstruct the Cla SW coefficients by randomly
selecting the same number of physical measurements from
the same sample grids and carry out BP using a Wigner D-
function measurement matrix with ¢ =0 functions only (i.e.,
rescaled spherical harmonics) and the appropriate precondi-
tioning from Ref. 22. In the continuous case, the precondi-
tioning is so that samples can be uniformly selected from
the domain, so we heuristically view this approach as dis-
crete samples from the appropriate uniform continuous case.
The results of this can be seen over the range of possible
measurements in Fig. 10, where we average over 25 trials at
each number of measurements. For small sample numbers
from all grid densities, the 2DDFT CS approach performs
comparably to the gridded Wigner D-function approach.
Near full sampling, the gridded Wigner D-function approach
performs slightly better. The reasoning for this is the same
as seen in the continuous case presented in the text related
to Fig. 9. Interestingly, when the measurement number is
closer to full sampling, increasing the grid density causes an
increase in relative error for both methods. We discuss this
worsening of the 2DDFT CS method in Sec. IV F. As a note,
we would like to emphasize that the on-grid Wigner D-func-
tion approach does not provide a theoretical guarantee like
Theorem 7 does for the 2DDFT CS method. Thus, its

%}ridded Fourier vs. Gridded Wigner D CS

—_9DDFT CS 1x Nyquist
-60 | |—— WD CS 1x Nyquist
----2DDFT CS 2x Nyquist
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Number of Physical Measurements

FIG. 10. (Color online) Coefficient relative error for on-grid Fourier CS
versus on-grid Wigner D-function CS. Averaging over 25 trials for each
number of measurements, the proposed Fourier-based CS performs slightly
worse than the on-grid Wigner D-function CS when sampling from the
Nyquist grid. When the grid density increases, the performance of both
methods degrades slightly. Note that the on-grid Wigner D-function
approach does not have any theoretical backing like the Fourier method
does in Theorem 7.
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usefulness cannot be guaranteed to extend to other coeffi-
cients, nor can we guarantee that it will degrade gracefully
with noise.

F. SW coefficient recovery in the presence of noise

The examples above all contained no measurement
noise. In the presence of measurement noise, even classical
Nyquist sampling approaches will have their performance
degrade. However, to improve accuracy in the presence of
noise, oversampling at a rate greater than the Nyquist rate is
common. For example, we simulate measurements of the
sound fields generated by Cla, C2a, and C3a with mean
zero and variance that is 40dB below the peak value for
each case. Using these simulated measurements, then we
plot the coefficient relative error, (35), resulting from the
classical fully sampled Fourier method in Ref. 24. The
results are given in Fig. 11. As can be seen in Fig. 11,
increasing the sampling to five times the Nyquist rate results
in a decrease in the relative error of nearly 15dB for each
case. Note the curves are split apart because the peak field
value, and thus total noise, increases from Cla to C2a and
again to C3a.

As discussed in Sec. IVE, we can increase the sample
grid in the 2DDFT CS method and use it under the same
guarantees as seen in Theorem 7. This allows us to directly
compare our method with those results in Fig. 11. To that
end, we first investigate the relative error from CS recon-
structions of the SW coefficients in Cla, C2a, and C3a with
the —40 dB Gaussian noise used in Fig. 11 as a function of
the number of physical measurements and the grid density.
For each sampling number and grid density, we average the
relative error over 25 trials in Fig. 12. As can be seen in Fig.
12, for a fixed number of measurements, the relative error
slightly degrades as the grid density increases. One might
assume the accuracy should be constant with the fixed num-
ber of measurements. However, this is not the case. In par-
ticular, for a fixed number of physical measurements, the
likelihood of the measurement matrix being worse for CS
increases as the sample grid increases. This is visualized in
Fig. 13, where we plot the coherence of the column

SW Coeff. Relative Error
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FIG. 11. (Color online) Classical Fourier reconstruction with measurement
noise. SW coefficients from Cla, C2a, and C3a were reconstructed accord-
ing to Ref. 24 with zero-mean Gaussian measurement noise whose variance
is 40 dB below the maximum field value in each case. With a band limit of
Nmax = 15, the Nyquist rate sampling requires 496 measurements.
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FIG. 12. (Color online) CS coefficient relative error versus number of phys-
ical measurements in cases Cla, C2a, and C3a. Shown is the 2DDFT CS
method for cases Cla, C2a, and C3a with added zero-mean Gaussian mea-
surement noise with variance 40dB below the maximum field value. For
each case, 2DDFT CS with a fixed number of samples and increased grid
density results in slightly degraded relative error. Note that at the band limit
of nmax = 15, the Nyquist grid has 496 possible measurements.

normalized version of @y for the 2DDFT CS method. The
coherence of a matrix ® € C**V with normalized columns
is defined as®

(D =
w(®) [ fnax

b7 ;1 37)

where ¢; is a column of ®. To get physical intuition for this
decrease in performance, we hypothesize the following. If
we sample near the Nyquist rate, then the recovery should
be near perfect, but if the grid density increases, then mea-
surements have an increased likelihood to cluster in certain
locations, becoming more coherent and leaving larger gaps
of the field unmeasured. We note this is a hypothesis since
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FIG. 13. (Color online) Coherence of @ in two dimensions (2D). The aver-
age coherence of the 2DDFT CS measurement matrix is suggestive of
decreased performance for increased sample grid density and fixed mea-
surement number. Averaging is taken over 25 trials for each combination of
grid density and measurement number.

clustering measurements is a statement about the rows of
the measurement matrix, while the coherence is a measure
of column-wise relationships, and so rigorous statements
about the relationship are likely to be much more subtle.

The intent of increasing the sampling rate in the classi-
cal Fourier approach to recover the SW coefficients in Ref.
24 is to increase the method’s robustness to noise. Figure 12
showed that increasing grid density and keeping the sample
number the same does not improve performance when using
CS with Lemma 6. However, if we consider fixed sampling
densities (number of measurements used divided by the total
possible number) as the density of the sampling grid is
increased, we see improvements in our proposed CS
approach. Figure 14 shows these results for Cla to C2a and
again to C3a with the same noise as before. Similar to the
classical Fourier case, for a fixed sample density and
increased grid density, the relative error decreases for each
case tested. This can be interpreted as de-noising that occurs
by promoting more sparse coefficients in QCBP.
Interestingly, the de-noising from the proposed CS approach
with a denser than Nyquist grid and sub-sampling gives bet-
ter results than the de-noising attained from using oversam-
pling with the method from Ref. 24. This indicates, at least
in this case, the de-noising benefits of CS via QCBP are an
added benefit beyond simply decreasing the required num-
ber of measurements. Thus, if one is currently using Nyquist
sampling at some denser grid than Nyquist, using the CS
approach and fewer measurements may improve accuracy.
For example, CS with a sample density of nearly 1/3 at two
times the Nyquist rate beats the classical Fourier approach
with sample density 1 at two times the Nyquist rate by
nearly 20 dB or more in Cla, C2a, and C3a.

V. CONCLUSION

We have developed an approach to recover SW or SH
expansion coefficients using compressive samples taken
from a pre-defined grid. This approach not only avoids using
measurements at arbitrary positions on the sphere or SO(3),
as is common for BOSs, but it does so while maintaining
robust reconstruction guarantees. For sufficiently sparse
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FIG. 14. (Color online) CS coefficient relative error versus sample grid den-
sity in cases Cla, C2a, and C3a. With additive measurement noise, fixing
the sample density (measurement number divided by number of possible
measurements) and increasing grid density for cases Cla, C2a, and C3a
result in improved relative error using the 2DDFT CS method. In other
words, increasing the sampling rate and sample number improves the de-
noising achieved by the 2DDFT CS method and outperforms oversampling
with the classical method in Fig. 11. The noise used here is added zero-
mean Gaussian measurement noise with variance 40dB below the maxi-
mum field value. The band limit used, 7m,x = 15, results in the Nyquist grid
having 496 possible measurements.

signals in both domains, the number of measurements
required for robust reconstruction has sub-linear scalings
with the basis dimension. These scalings are slightly worse
than the best cases from the literature;zz’44 however, these
reference methods require samples from arbitrary positions
on the sphere and SO(3).

Using our proposed CS approach, we numerically com-
pared its results with a commonly used Fourier approach to
recover SW or SH expansion coefficients. In our tests, our
on-grid CS approach performed comparably in the presence
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of noise when a Nyquist grid was used. However, when the
grid sampling was increased to two times the Nyquist rate,
our CS approach boasted increased de-noising capabilities
while using fewer measurements. For the three examples
used to test the CS approach, the relative error for the CS
method beats the classical Fourier approach by 20 dB or bet-
ter. Moreover, this was achieved while using a third of the
measurements needed for the classical Fourier approach.

The CS approach developed in this paper allows for
field reconstructions in various application areas like acous-
tic spherical holography, loudspeaker characterizations, and
even EM antenna characterizations. In some of these cases,
measurements are restricted to certain areas on the sphere or
SO(3).*° The work in Ref. 40 can straightforwardly be gen-
eralized to the approach developed in this paper so that
gridded and restricted measurements can be used for SW or
SH field reconstructions. However, the effect of compound-
ing transformations (continuous Wigner D-function to dis-
crete Fourier and then to a Slepian basis) on the
conservation of sparsity throughout the bases requires fur-
ther investigation and would be a suitable future direction of
study.

APPENDIX: PROOF OF LEMMA 6

First, we note that the Wigner d-function with integer n
is periodic on 27 (Ref. 36) and can be expressed as a Fourier
series. This Fourier series is band limited and has the form'’

dyr(p) =i Y AT e, (A1)
where
A=y (g) , (A2)
A gnim (”) (A3)
2
Substituting (8) and (A1) into (7) gives
wj = sze—imy,—i‘ua/—imlﬂj» + 17!7 (A4)
n=0 m,u,m'=—n
= R AT R A m g (A5)

We now reorder the sums so that the sum over #n is on the
inside, yielding

Mmax ) . .y
§ L —imy;—ipo—im' f;
/(n e J J J _|_ r’/)

7,41 =—Nimax B=Nmin

Mmax

(A6)

wj =

where nyi, = max(|m|, |u|, |m']). In anticipation of benefits
in terms of measurements (see Remark 10), we extend the
ranges of the m',m, and pu sums to range from 7y, to
Nmax, iving
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Nmax Nmax . . -
M —1my; —1Qo;—1n p;
D el oy (A7)

MU' =—nNmax — 1 1=Nmin

Wj:

! ! . .
where we define A" and A} * to be zero if m', m, or p is

—nNmax — 1. Next, define the sum over n in (A7) as
Tmax
mu o
bm/ - /{n .

N=Nmin

(A8)

Thus, we arrive at a restatement of our problem in two parts.
First, we solve for the coefficients b/ from the linear prob-
lem in (A9),

Nmax

S

1 == P — 1

bt il (A9)

This amounts to finding the Fourier series coefficients of w,
b;’;f‘ , from a set of measurements. Then we solve for the
Wigner D-function coefficients a* from the Fourier coeffi-
cients b using the following linear inverse problem:

Vm,u € {_nmax — 1, —Nmax, -~-anmax}7
Mmax
mu § : mp
bm/ - ln
N=Nmin

mu __ spu—m A Am mmp
In =1 An An a, -

(A10)

These equations can be equivalently written as matrix
equations,

w = Opb + 17, (A11)
Vm,,u S {_nmax - 17 —Nmax; "-anmax}v
p = B, (A12)

where ®f is M x Ng with Ny being the number of band lim-
ited complex exponential functions Np = (2nmax + 2)3.
Here, we have used

[(DFL‘J = 6?71'"(")1’”'eii”(")x"eiim,(/')ﬁf7 (A13)
Amin = max(|ml, [u]), (Al4)
a" = [t ] (A15)
S LRI N (A16)

for some ordering m(j), u(j), m'(j), with the vector b corre-
spondingly arranged. The matrices B"* € CH™>*dm2 iy

dim; = 2npax +2  and  dimo = ngax + 1 — 7imin have
elements
m wmua |i_nmax_ 1| Sﬁmin_ 1+J
[B"];; =
0 otherwise,
mp __ su—m I—Nmax — L.t A I—Nmax—1,m
l/j =1 Aﬁ\ni||71+j ﬁmin71+j ’ (A17)
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where 1=1,2,....2nmx +2 and j=1,2,..., nmax + 1
—FAmin. The size of the matrix B”* can be seen from the fact
that there are no a)'* with n < fipin. The restriction on the
B™ values can be seen from the fact that A”*A™™ = (
when |m'| > n.

Now select possible measurement points given by
(0, B vi) = )/ (2nmax + 2), 27k / (2nmax +2), 27l / (2nmax
+2)) for j,k,1 € {—nmax — 1, —Amax, -+, fmax }- We call this
the Nyquist grid on T°. Thanks to the double covering of
SO(3) by T, the Nyquist grid on T straightforwardly maps
to a grid of measurement points on SO(3). Rewriting (A9)
with these selected measurement points gives

Wikl = W(“jv B> 1)

_ % bzllle[7i2n(l4i+mk+m’l)]/(2nmax+2) + M-
Um, ' =—Nmax —1
(A18)

This can be recognized as the 3DDFT of the coefficients

b}, Thus, if we sample at a subset Q of all of these possible

positions, we have the matrix problem,
Ny2w = PoUpb + N, ', (A19)

where Ny = (2nmax +2)°, Up € CVM is the unitary
matrix representing the 3DDFT, and Pq is the matrix select-
ing the subset of rows Q of Up.
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