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ABSTRACT:
We derive a compressive sampling method for acoustic field reconstruction using field measurements on a pre-

defined spherical grid that has theoretically guaranteed relations between signal sparsity, measurement number,

and reconstruction accuracy. This method can be used to reconstruct band limited spherical harmonic or Wigner

D-function series (spherical harmonic series are a special case) with sparse coefficients. Contrasting typical compres-

sive sampling methods for Wigner D-function series that use arbitrary random measurements, the new method sam-

ples randomly on an equiangular grid, a practical and commonly used sampling pattern. Using its periodic extension,

we transform the reconstruction of a Wigner D-function series into a multi-dimensional Fourier domain reconstruc-

tion problem. We establish that this transformation has a bounded effect on sparsity level and provide numerical

studies of this effect. We also compare the reconstruction performance of the new approach to classical Nyquist sam-

pling and existing compressive sampling methods. In our tests, the new compressive sampling approach performs

comparably to other guaranteed compressive sampling approaches and needs a fraction of the measurements dictated

by the Nyquist sampling theorem. Moreover, using one-third of the measurements or less, the new compressive sam-

pling method can provide over 20 dB better de-noising capability than oversampling with classical Fourier theory.
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I. INTRODUCTION

Band limited spherical wavefunction (SW) expansions

in three dimensions (3D) and their restrictions to a sphere,

spherical harmonic (SH) expansions, have become a key

tool in many acoustics applications. Recent high-interest

applications of these series expansions range from surround

sound,1–3 spherical acoustic holography,4–6 and acoustic

levitation7,8 to beam-forming/source localization,9,10 direc-

tivity characterization,11,12 ultrasonic medical imaging13,14

and material characterization,15,16 and even electromagnetic

(EM) applications like spherical near-field to far-field trans-

formations (SNF2FFTs).17 The utility of the SW and SH

expansions is quite broad. In surround sound settings,1–3

spherical acoustic holography,4–6 and acoustic or EM direc-

tivity characterizations,11,12,17–22 one needs explicit knowl-

edge of the SW or SH series coefficients to reconstruct or

reproduce a given sound or EM field. A similar situation is

present in ultrasonic medical imaging,13,14 where SH series

coefficients are needed to model the shape of various organs

inside the body. The usage of SWs and SHs in crystallogra-

phy is slightly different; in this application, the SW or SH

coefficients are used to relate an easily measurable quantity

to the crystalline texture of polycrystalline material.15,16

Moreover, in acoustic levitation, ultrasound, and even room

transfer function estimation,23 the need to know the acoustic

field of a device to a high level of detail presents a future

application for SW/SH characterizations, in particular,

acoustic SNF2FFTs.24 Such characterizations are especially

important for spherical arrays that are being used to generate

or characterize sound fields because minor transducer errors

in the array can lead to major performance degradation in

certain scenarios.25

Estimating the SW or SH expansion coefficients of an

acoustic field requires first taking measurements on a fixed

radius sphere using a spherical array of microphones1,3 or,

in the more general case, higher-order probes,24 i.e.,

extended geometry probes sensitive to high-order SH/SW

modes (m> 1 modes). From these measurements, one can

then use integral approaches1,15,16 or, as has become quite

common, a linear inverse problem1–3 to solve for the SW

coefficients. According to the Nyquist sampling theorem,

the number of measurements M required to accurately esti-

mate a field’s coefficients in the band limited SW/SH series

scales with the square of the band limit1,24 (here band limit

refers to the highest degree SH/SW needed to describe the

spatial distribution of the field). Depending on whether a

classical integration or linear inverse problem is used, the

constant scaling coefficients of this quadratic relationship

can vary.1,15 When using a measurement probe sensitive to

only m � 1 modes, this also holds for vector SWs/SHs in

EM applications.17 For even small band limits, the number

of measurements can be time-consuming and turn into
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hundreds or even thousands of measurements.1,15 Thus,

characterizing an acoustic field can require many micro-

phones in a spherical array (e.g., in spherical holography,

source localization/beam-forming, directivity characteriza-

tion, etc.) or be time-consuming for using if re-positioning

the experimental apparatus (e.g., the source/receiver micro-

phone/higher-order probe or a polycrystalline material). As

a note, in EM SNF2FFTs, measurement numbers fare even

worse since typical devices can require hundreds of thou-

sands of measurements due to their band limit and noise

requirements.18,19

In many of the above-mentioned applications, methods

relating to sparse signal processing have been of interest to

speed up measurement times, reduce the need for many

measurement devices, or decrease the number of transducers

needed to reproduce a sound field.2,6,26–28 When the sound

fields of interest satisfy certain properties, e.g., the sound

field is from a symmetric loudspeaker or the field has a

smooth, regular, or symmetric spatial distribution, the SW/

SH coefficients can be considered as sparse or compressible

(i.e., approximately sparse). Here, sparse means that the

coefficients contain mostly zero entries with few non-zero

values. In these cases where the coefficients are sparse or

compressible, compressive sampling (CS) can be used to

accurately solve the linear inverse problem for the SW/SH

coefficients while requiring fewer measurements than

needed in integral approaches or to make the linear inverse

problem fully determined.29–35 Such a reduction in the

required number of measurements can allow for reduced

measurement times and, for microphone arrays, require

fewer microphones to be used.

A. Contributions and relation to other work

To derive a CS approach for the many acoustics applica-

tions described above as well as EM applications like

SNF2FFTs, we prove a CS guarantee for a series of Wigner

D-functions. SH or SW function series are special cases of

Wigner D-function series, so the approach developed also

specializes to these two cases. Specifically, in the case where

measurements are performed by moving an “ideal” micro-

phone (measuring a perfect point of the field) to different

measurement positions or using a spherical array of “ideal”

microphones, the Wigner D-function expansion reduces to

the SH (thus SW) expansion by using only a certain subset of

Wigner D-functions. Alternatively, in the case where mea-

surements are taken using an extended non-ideal probe, the

Wigner D-function series is required unless simplifying

assumptions are made, e.g., using an ideal measurement

probe. This is a direct result of accounting for the probe’s

sensitivity to SWs in its coordinate frame and carrying out

the appropriate transformations to relate the measurements

taken and the SW expansion coefficients of interest.24 For

mathematical context, the Wigner D-functions are an irreduc-

ible representation of the symmetry group of the sphere, the

rotation group SOð3Þ, and they form an orthogonal basis for

band limited functions on SOð3Þ.36

For a particular linear inverse problem, the number of

measurements required and where these measurements

should be taken are key factors in determining the success of

CS. One approach is to use experimentation or to algorithmi-

cally find measurement positions that minimize the coherence

of the measurement matrix (which depends on the number of

measurements and their positions) in the inverse problem

while remaining within constraints dictated by device proper-

ties, e.g., microphone radii, positioning accuracy, etc. For

applications using a Wigner D-function series to solve for its

series coefficients, experimentally tested approaches have

been given considerable study,19,37,38 and coherence-based

analyses have also been of interest.20–22 However, such

approaches do not establish the required number of measure-

ments, guarantee robustness to noise, guarantee robustness to

small increases in signal sparsity, or guarantee robustness to

small decreases in measurement number.

Alternatively, the drawbacks of experimentation or

coherence analyses can be avoided if the measurement

matrix satisfies certain properties. Conventionally, the

robust nullspace property (RNP) guarantees methods like

quadratically constrained basis pursuit (QCBP) produce

accurate solutions for the unknown signal. A sufficient con-

dition that provides strong guarantees for satisfying the RNP

is a measurement matrix that satisfies the restricted isometry

property (RIP). Verifying the RIP for a given measurement

matrix is NP-hard.39 Due to this fact, probabilistic

approaches showing that a measurement matrix satisfies the

RIP with high probability are normally used.22,34,40 Such

approaches have been used to give RIP-based results for

Wigner D-functions.22,40 The drawback of the existing prob-

abilistic RIP-based guarantees, however, is that they require

sampling at arbitrary random positions on SOð3Þ to get

robust theoretical guarantees. This requirement can be diffi-

cult or impossible for most measurement systems or micro-

phone arrays; arbitrary points can be too close physically in

multi-probe systems and highly time-inefficient in single

probe systems. This situation contrasts with the coherence-

based methods like those in Refs. 20–22, where hard/

impossible measurement patterns can be deliberately

excluded from use.

In this article, we develop a CS method to estimate

Wigner D-function series expansion coefficients where mea-

surements are taken randomly from a fixed grid. Moreover,

this CS method has robust theoretical guarantees specifying

the number of measurements needed and bounding the error

of the estimated coefficients. Thus, our work negates the

problematic need for sampling at arbitrary positions in space

as present in existing approaches22,34,40 and gives stronger

and more prescriptive theoretical guarantees than

coherence-based analyses. Thus, we show that CS guaran-

tees can be applied to the linear inverse problem arising

from solving for the Wigner D-function coefficients without

arbitrarily positioned measurements on SOð3Þ. Additionally,

our approach requires fewer measurements than the classical

Nyquist sampling theorem requires. To the best of our

knowledge, this is the first result giving theoretical
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guarantees for CS recovery of the coefficients in a series of

Wigner D-functions where measurements are selected from

a fixed grid on SOð3Þ (sphere in the SW/SH special cases).

B. Outline of results

In the present article, we provide a method to apply CS

to recover the coefficients of a series of Wigner D-functions,

and thus SW or SW series, that only requires selecting sam-

ples from a pre-defined grid on SOð3Þ (sphere in the special

case of SWs/SHs). In this problem, we assume that the field

measured, wða; b; cÞ, can be written as a band limited series

of the Wigner D-functions. The arguments a, b, and c
parametrize a point in SOð3Þ corresponding to a physical

position where the field can be measured. In this setup, a
and c are 2p periodic, while b is typically taken to be

in ½0; p�. It is well known, however, that the Wigner D-

functions naturally possess a periodicity when taking

b 2 ½0; 2pÞ.36 Moreover, this periodicity is captured in a

well-known Fourier expansion for the Wigner D-

functions.17 Thus, the approach we take to solve for the

coefficients of a Wigner D-function series is to utilize this

natural domain extension, periodicity, and Fourier expan-

sion. Since we assume wða; b; cÞ is a series of Wigner D-

functions, the periodic extension of the Wigner D-function

naturally induces one in w and makes w periodic in all of its

arguments by letting b be in ½0; 2pÞ. This domain extension

takes the function w on SOð3Þ and maps it to the 3-torus T3,

which is a double cover of SOð3Þ.
Now considering the periodically extended Wigner D-

functions and wða; b; cÞ, we transform the problem to the

Fourier basis. This allows us to treat the solution of the

Wigner D-function inverse problem as a multi-dimensional

discrete Fourier transform (DFT) problem. Moreover, this

transformation is carried out in a way that preserves impor-

tant sparsity structures in w. In this multi-dimensional DFT

form, we can then sample a subset of the positions to

achieve CS for the band limited series of Wigner D-func-

tions (see Theorem 7).

In a bit more mathematical detail, we start with the

problem of solving for the vector a from the inverse

problem,

w ¼ UDaþ g; (1)

where w is the vector of measurements of wða; b; cÞ at a set

of points ðaj; bj; cjÞ 2 SOð3Þ, UD is the measurement matrix

whose rows contain the Wigner D-functions Dlm
n ðaj; bj; cjÞ,

a is the vector of coefficients in the Wigner D-function

series for wða; b; cÞ, and g is additive measurement noise.

Here, we have standard ranges for the arguments of the

Wigner D-function, a 2 ½0; 2pÞ, b 2 ½0; p�, and c 2 ½0; 2pÞ.
Note that the Wigner D-functions relate to the spherical

harmonics in a form like Dl0
n ða; b; cÞ ¼ cl

nY�l
n ðb; aÞ or

D0m
n ða; b; cÞ ¼ cm

n Y�m
n ðb; cÞ, where the c coefficients are

constants depending on its indices.36 Thus, SW/SH series

can be considered a special case of (1).

Without making any further assumptions beyond

wða; b; cÞ being representable as a series of Wigner D-func-

tions, we recognize that if we extend b to be in ½0; 2pÞ, the

Wigner D-functions in UD become periodic in all three argu-

ments ða; b; cÞ.36 With this periodic domain extension,

instead of ða; b; cÞ being on SOð3Þ, they are taken to be on

T3. Since wða; b; cÞ is the Wigner D-function series with

coefficients in a, wða; b; cÞ also becomes periodic. In terms

of measurements, this amounts to letting the polar angle of

measurements wrap completely around the sphere on which

measurements are taken. For a spherical microphone array,

this is a reinterpretation of the existing microphone posi-

tions. Each microphone would have one position with

0 � b � p and a second position with p < b < 2p. As dis-

cussed later, this means the measurements from a specific

microphone may be used twice. Additionally, for a high-

order probe like those in Refs. 17 and 24, the domain exten-

sion means the second rotation in the set of Euler rotations

in the zy0z0 convention is extended to a full 2p range. With

these physical pictures in mind, the periodicity of wða; b; cÞ
with an extension in b becomes more intuitive. Note that the

periodic extension of the domain and resulting re-use of

measurements can appear at first glance to not benefit the

prospects of CS. In particular, prospects would not improve

because it would merely add repeated rows to the measure-

ment matrix in (1). However, we do not argue to use the

Wigner D-function domain problem as is; rather, we pro-

pose transforming the problem to the spatial Fourier domain.

In this alternative formulation, these physically identical

measurements will constitute distinct rows of a new mea-

surement matrix.

Due to the periodicity of the Wigner D-functions, there

is a transformation, which we denote with B, that takes the

problem from a Wigner D-function basis with arguments

a; b; c 2 ½0; 2pÞ to the Fourier series basis. That is, we can

write the problem as

w ¼ UFbþ g; (2)

b ¼ Ba; (3)

where UD ¼ UFB. Here, UF is the measurement matrix

whose rows contain the basis functions for the three-

dimensional Fourier series, and b is the vector containing

the Fourier coefficients for w on T3. Fortunately, the B
matrix derives from the well-known Fourier expansion for

the Wigner D-functions and can be computed directly from

the Wigner D-functions. Importantly, it is the case that B is

well-conditioned and increases the sparsity level of the

problem in a bounded way in situations where the sparsity

comes from the field coefficients using a few m; l subspaces

or only low-frequency functions in the Wigner D-function

basis. Thus, to solve (1), we can first solve for the Fourier

coefficients b and then solve for the Wigner D-function (or

SW/SH) coefficients a. When one is simply interested in the

special cases of SW or SH series, this directly gives the

coefficients desired. For high-order probes (e.g., in

SNF2FFTs), a can be used to calculate the SW coefficients
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of the speaker/emitter after factoring out the appropriate

transformation information.17,24

In the above, we transformed the problem in (1) from a

Wigner D-function series on SOð3Þ to a Fourier problem on

T3. If we suppose that measurements are taken at a selection

of points from an equiangular grid covering T3 at the

Nyquist rate [which is also a Nyquist sampling on SOð3Þ],
then UF becomes a sub-sampled three-dimensional DFT

(3DDFT) matrix. We denote the 3DDFT matrix as UF.

Since the measurements form a sub-sampled 3DDFT, we

can write the problem as

w ¼ PXUFbþ g; (4)

where PX is the matrix selecting a subset of M rows from

UF. With the problem in (1) cast in this way, we can

apply standard CS recovery guarantees for sub-sampled

unitary measurement matrices.35 Thus, we achieve com-

pressive measurements from a sub-selection of measure-

ments from a pre-defined grid on T3 [and so SOð3Þ]. To

get these robust reconstruction guarantees from CS, the

number of measurements, M, must scale as (see

Corollary 12.38 of Foucart and Rauhut35 and our main

result, Theorem 7)

M � ~CsF ln4ðNFÞ; (5)

where NF is the size of the band limited three-dimensional

Fourier basis, sF is the sparsity in this basis, and ~C is a con-

stant. Transforming this equation for M into a form depend-

ing only on Wigner D-function basis information, one gets a

worst-case scaling of (see Theorem 7 and Remark 8)

M � ~C
0
N

1=3
D sD ln4ðNDÞ; (6)

where ~C
0

is a constant, sD is the sparsity in the Wigner D-

function basis, and ND is the size of the Wigner D-function

basis.

C. Structure of this paper

The remainder of this paper is structured as follows.

Section I D provides the notation used throughout the

paper. Section II contains the background information on

the Wigner D-functions and field measurements in the

general case of using high-order probes in Sec. II A along

with the results we need from the CS literature in Sec.

II B. Section III then gives the transformation of the

inverse problem in (1) from the Wigner D-function formu-

lation to the Fourier formulation as well as the CS guaran-

tees for this problem with the gridded sampling of T3. We

follow with numerical examples in Sec. IV. This section

includes investigations into the effect that transforming

from the Wigner D-function formulation to the Fourier

formulation has on the sparsity of the coefficient vector,

Secs. IV A and IV C, and then examples of CS recovery in

the Fourier formulation, Sec. IV D. Last, we provide a

conclusion in Sec. V.

D. Notation

Throughout this paper, we use the following notation

and conventions. The sum
Pn

m;l;m0¼�n is used to meanPn
m¼�n

Pn
l¼�n

Pn
m0¼�n. We use i ¼

ffiffiffiffiffiffiffi
�1
p

as the unit imagi-

nary number. An overline represents complex conjugation,

e.g., �a. We represent the Hermitian conjugate of a vector or

matrix with H, e.g., aH ¼ aT , where T denotes the transpose

operation. The norm k � k2 is the standard ‘2 vector norm.

k � k1 is either the ‘2 or L1 norm, which should be discernible

from context. As usual, for a vector, kak1 ¼ maxiðjaijÞ, and

for a function, kfk1 ¼ inffc� 0 : jf ðxÞj � c for almost every

xg. For Euler rotations, we use the zy0z0 and passive transforma-

tion conventions.36 We use i.i.d. to abbreviate independently

and identically distributed.

II. BACKGROUND

In this section, we develop the background for our work

in the context of spherical field measurements with general

probes and also state the requisite CS reconstruction guaran-

tees from the literature.

A. Spherical field measurements and CS

When measuring acoustic fields, it is often assumed that

the transducers used are omnidirectional point receivers that

can measure the field of interest directly at their position;

see, for example, Ref. 1. However, when high-order trans-

ducers or arrays are used for measurement, there will be

inherent directional dependence on the directivity of the

field probe. To account for this property in spherical field

measurements, one must include the directionality of the

measurement device in the calculation of the field from

measurements. The directionality of the field probe can be

defined in terms of its sensitivity to SWs, called the receiv-

ing coefficients and denoted by Rl
� . The inclusion of this

directionality is called probe correction and is discussed in

detail in Ref. 24.

In summary, probe correction for spherical field mea-

surements is carried out as follows. First one considers the

field of interest as a band limited series of outgoing spheri-

cal waves (if a radiator is contained in the sphere of mea-

surements) or standing waves (if no source is in the sphere

of measurements). We denote this band limit as nmax. As a

note, if a radiator is present, nmax is related to the physical

size of the radiator. In the no radiator case, nmax relates to

the frequency content in the field of interest.1 A coordinate

transformation is then performed so that the probe-centered

coordinate system, which lies on the surface of the sphere

enclosing the radiator, properly relates measurements to the

coordinate system centered on the radiator. This is done

using a rotation and translation. The rotation can be speci-

fied as a set of Euler rotations parametrized in the zy0z0 and

passive transformation conventions. The resulting expres-

sion for the measured field is
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wj ¼ wðaj; bj; cjÞ

¼
Xnmax

n¼0

Xn

m¼�n

Xn

l¼�n

aml
n Dlm

n ðaj; bj; cjÞ þ gj; (7)

where gj are elements of the additive measurement noise g.

Here, j indexes arguments of the Wigner D-function,

ðaj; bj; cjÞ 2 SOð3Þ, corresponding to the jth measurement

position. This relationship between the coordinates in SOð3Þ
and the Euler angles of measurement point j, ðRz;Ry0 ;Rz0 Þ is

given by ðaj; bj; cjÞ ¼ ð�Rz0 ;�Ry0 ;�RzÞ or equivalently

ðaj; bj; cjÞ ¼ ðp� Rz0 ;Ry0 ; p� RzÞ.36 This is depicted in Fig.

1. Additionally, Dlm
n ða; b; cÞ is the Wigner D-function, and

its indices satisfy n 2 f0; 1;…; nmaxg and m; l 2 f�n;�n
þ1;…; n� 1; ng. The total number of Wigner D-functions

and, thus, coefficients ND ¼ ðnmax þ 1Þð2nmax þ 1Þð2nmax

þ3Þ=3. The Wigner D-function is defined as

Dlm
n a; b; cð Þ ¼ e�iladlm

n ðbÞe�imc; (8)

where dlm
n is the purely real Wigner d-function defined by

Sec. 4.3.1, Eq. (4), of Ref. 36,

dlm
n ðbÞ ¼ ð�1Þl�m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ mÞ!ðn� mÞ!ðnþ lÞ!ðn� lÞ!

p
�

Xmin nþm;n�lð Þ

r¼max 0;m�lð Þ
nr;

nr ¼
ð�1Þr cos

b
2

� �2n�2rþm�l

sin
b
2

� �2r�mþl

r!ðnþ m� rÞ!ðn� l� rÞ!ðl� mþ rÞ! : (9)

The Wigner d-function’s indices satisfy the same restric-

tions as those of the D-function. The spherical harmonics

are a special case of the Wigner D-functions, given by Sec.

4.17, Eq. (1), of Ref. 36,

Yl
n ðb; aÞ ¼ ð�1Þm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1
p

4p
D�l0

n ða; b; cÞ; (10)

Ym
n ðb; cÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1
p

4p
D0�m

n ða; b; cÞ: (11)

In (7), the coefficients aml
n contain the original SW

coefficients, the translation transformation information, and

the probe receiving coefficients. In particular, the aml
n take a

form like aml
n ¼ Am

n

P
�S

ll
n� ðrabÞRl

� , where Am
n are the SW

coefficients, and Sll
n� is the translation operator for SWs with

a translation distance of rab. The explicit form of Sll
n�

depends on whether the original field expansion is outgoing

or standing waves.41

The paragraphs above set up a linear inverse problem

we wish to solve using CS. However, for CS to be a valid

approach, we must establish cases where coefficient sparsity

is a valid assumption. In cases where the field of interest is

highly symmetric with respect to the radiation coordinate

system, there will be few non-zero Am
n , so regardless of

probe type, the aml
n will be sparse/compressible.42,43 In a

more specific case, if the probe is small, i.e., kkrprobe is small

(where kk is the wavenumber of the field of interest and

rprobe is the smallest sphere circumscribing the probe) or

highly rotationally symmetric, the Rl
� will be approximately

zero for l � j1j and larger �, so again the aml
n will be

sparse/compressible even if the Am
n are not totally sparse

themselves. In contrast, in cases where an omnidirectional

receiver that directly measures the field of interest is used,

(7) is equal to the field sampled at the position j. This can be

interpreted as the translation factors multiplied by the

Wigner D-functions collapsing down to be the SW/SH

expansion for the field at the point j.24 Due to this collapsing

of the series expansion, the sparsity assumption must hold

for the SW/SH coefficients Am
n directly. Note that our

method is general and does not depend on the probe selec-

tion; only the validity of the sparsity assumption does.

For comparison with our method in Sec. III, we now

give the existing scaling in the number of measurements

required to give successful and robust CS recovery for

Wigner D-functions and SHs. Note that both results require

random measurements on arbitrary positions of their

domain. For Wigner D-functions, the number of such mea-

surements must satisfy (see Theorem 3 from Bangun et al.22)

M � ~C
0
N

1=6
D sD ln4ðNDÞ; (12)

where sD is the sparsity in the Wigner D-function basis.

Here, ~C
0 � 0 is constant. For the case of the sphere, i.e.,

SW/SH expansion, M has the same form of scaling but with

ND replaced with the number of band limited SHs,

NSH ¼ ðnmax þ 1Þ2, and sD replaced with the sparsity in the

SH basis, sSH,44 i.e.,

M � ~C
0
N

1=6
SH sSH ln4ðNSHÞ: (13)

Though the CS guarantees mentioned above are useful

in establishing theoretical viability and requirements for

FIG. 1. (Color online) Transformation to probe coordinates. The measure-

ment position of a probe is specified by three Euler angles ðRz;Ry0 ;Rz0 Þ and

a fixed distance to the spherical scanning surface, rab. The device under test

(DUT) is centered on coordinate system ðxa; ya; zaÞ, and the probe is cen-

tered on coordinate system ðxb; yb; zbÞ. To transform from the DUT to the

probe, one first rotates by Rz about za, giving ðx1
a; y

1
a; z

1
aÞ. Then one rotates

by Ry0 about y1
a, bringing the coordinate system into ðx0a; y0a; z0aÞ. Next,

ðx0a; y0a; z0aÞ is translated by rab to ðx0b; y0b; z0bÞ, and a final rotation of Rz0 about

z0b brings one into ðxb; yb; zbÞ.
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using CS to solve (7) for its coefficients, their requisite ran-

dom sampling is problematic. As mentioned in the

Introduction, this is because many measurement systems

struggle to reach arbitrary points on SOð3Þ or the sphere,

and furthermore, random points on SOð3Þ or the sphere can

be too close together for some measurement setups and even

time-consuming when compared to regular patterns. Thus,

these CS results provide mixed gains. On one hand, they

reduce the required number of measurements. On the other

hand, they can give impossible measurement positions

(when they are too close for arrays) or increase measure-

ment times due to random positioning requirements. In con-

trast, coherence-based analyses like those in Refs. 20–22

provide regular patterns for measurements that can be car-

ried out rapidly, but these do not give strong theoretical

guarantees in the sense of prescribing a needed number of

measurements for QCBP to be successful with a guaranteed

accuracy and robustness to noise/small decreases in mea-

surement number. As we demonstrate in Sec. III, it is possi-

ble to maintain theoretical recovery guarantees while using

more regular sampling patterns on SOð3Þ or the sphere.

B. CS preliminaries

For our results that follow, we will need the following

definitions and results from the CS literature.

Definition 1 [best s-sparse approximation error (Ref.

35, p. 42, Def. 2.2)]. Given a vector x 2 C
N , the best s-

sparse approximation error in the ‘p norm is

rsðxÞp ¼ min
z2C

N :kzk0�s
kz� xkp: (14)

Definition 2 [RIP (Refs. 22 and 35, p. 133, Def. 6.1)]. A

matrix U 2 C
M�N satisfies the RIP of order s with constant

d 2 ð0; 1Þ if the following holds for all s-sparse vectors

x 2 C
N:

ð1� dÞkxk2
2 � kUxk2

2 � ð1þ dÞkxk2
2; (15)

where the smallest d denoted by ds is called the restricted

isometry constant of order s.

Theorem 3 (RIP for bounded orthonormal systems

(BOSs) [Ref. 35, p. 405, Thm. 12.31). Consider a set

of bounded orthonormal basis functions /i : D ! C; i
2 f1; 2;…;Ng that are orthonormal with respect to a proba-

bility measure q on the measurable space D. Consider the

matrix U 2 C
M�N

with entries

/ji ¼ /iðtjÞ; j 2 f1;2;…;Mg; i 2 f1;2;…;Ng (16)

constructed with i.i.d. samples of tj from the measure q on

D. Suppose the orthonormal functions are bounded such that

supi2f1;…;Ng k/ik1 � K. If

M � C0d
�2K2s ln4ðNÞ; (17)

then with probability at least 1� N�ln3ðNÞ, the restricted

isometry constant ds of 1=
ffiffiffiffiffi
M
p� �

U satisfies ds � d for

d 2 ð0; 1Þ. The constant C0 � 0 is universal.

Corollary 4 (RIP for unitary matrices (BOSs) [Ref. 35,

p. 405, Thm. 12.31 and p. 405, Cor. 12.38)]. Let U 2 C
N�N

be a unitary matrix with entries bounded from above by

K=
ffiffiffiffi
N
p

. Let U 2 C
M�N

be the sub-matrix of U acquired by

selecting a subset of rows of size M from U uniformly at

random among all subsets of size M. If

M � C0d
�2K2s ln4ðNÞ; (18)

then with probability at least 1� N�ln3ðNÞ, the restricted

isometry constant ds of (1/
ffiffiffiffiffi
M
p

)U satisfies ds � d for

d 2 ð0; 1Þ. The constant C0 � 0 is universal.

Theorem 5 [sparse recovery for RIP matrices (Ref. 35,

p. 144, Thm. 6.12)]. Suppose that the matrix U 2 C
M�N

has restricted isometry constant d2s < 4=
ffiffiffiffiffi
41
p

� 0:6246.

Suppose that the measurements are taken with U and are

noisy, y ¼ Uxþ g, with kgk1 � �. If x̂ is the solution to

x̂ ¼ arg min
z2C

N
kzk1 subject toky�Uzk2 �

ffiffiffiffiffi
M
p

�; (19)

then

kx� x̂k2 � C1

rsðxÞ1ffiffi
s
p þ �

� �
; (20)

where C1 � 0 only depends on d2s.

III. ON-GRID CS FOR SPHERICAL FIELD
MEASUREMENTS

Lemma 6 (solving for Wigner D-function series

coefficients in the discrete Fourier basis). Let wða; b; cÞ
2 L2½SOð3Þ� have a band limit nmax so that it has the series

expansion

wða; b; cÞ ¼
Xnmax

n¼0

Xn

m¼�n

Xn

l¼�n

aml
n Dlm

n ða; b; cÞ:

Let w 2 C
M

be the vector of M measurements of the periodic

extension of wða; b; cÞ taken on even Nyquist grid in T3

(2nmax þ 2 samples in each dimension). Assume these samples

are corrupted by the additive measurement noise, g 2 C
M.

Then the coefficients of the Wigner D-function series expansion,

aml
n , can be estimated using the following two-step method:

(1) Solve for the vector b 2 C
NF with NF ¼ ð2nmax þ 2Þ3

using the linear inverse problem

N
�1=2
F w ¼ UFbþ N

�1=2
F g; (21)

where UF 2 C
NF�NF is the unitary matrix representing

the normalized 3DDFT having 2nmax þ 2 samples in

each dimension.

(2) Using b from step 1, solve for the coefficients aml
n by

solving the linear inverse problem

b ¼ Ba; (22)

where a is the vector of aml
n and B can be written as a

block matrix with blocks Bml that only operate on the

coefficients aml
n with fixed m and l.
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Proof: See the Appendix.

With Lemma 6 set up so that the inverse problem in (7) is

reformulated as a linear inverse problem with a unitary mea-

surement matrix, (21), and the auxiliary problem (22), we state

the CS guarantee for the problem the Fourier basis, (21). The

SW/SH version of this result is stated in Remark 11.

Theorem 7 (sparse recovery for spherical field mea-

surements using a sub-sampled 3DDFT). Consider the linear

inverse problem specified in (21). Suppose that kN�1=2
F gk1

� �; PX is the matrix that selects a subset X of the rows of

UF. If X is selected uniformly at random from all subsets of

size M with

M � C2sF ln4ðNFÞ; (23)

then with probability 1� ðNFÞ�ln3ðNFÞ, if b̂
0
is the solution to

b̂
0 ¼ arg min

z2C
NF

kzk1

subject to kN�1=2
F w� PXUFzk2 �

ffiffiffiffiffi
M
p

�; (24)

then

kb0 � b̂
0k2 � C1

rsF
ðb0Þ1ffiffiffiffiffi
sF
p þ �

 !
: (25)

Here, C1 � 0, and C1 only depends on the restricted isome-

try constant of PXUF; d2sF
.

Proof: Note that UF can be written as a Kronecker product

of one-dimensional DFT matrices, UDFT 2 C
2nmaxþ2. That is,

UF ¼ UDFT 	 UDFT 	 UDFT . The elements of UDFT are of the

form e�ih=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nmax þ 2
p

with h 2 R. Thus, the elements of UF

satisfy j½UF�ijj ¼ je�iðh1þh2þh3Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2nmaxþ2Þ3
p

j � N
�1=2
F . Pairing

this fact with the unitarity of UF and then using Corollary 4 and

Theorem 5 gives the desired result. �

Remark 8. Changing our problem in (7) from the Wigner

D-function basis to the Fourier basis results in a change in

sparsity. This is because multiplying by Bml sums the entries

of aml
n along n. Typically, due to symmetries of the field and

probe, a device’s coefficients only use a few m; l subspaces. If

the number of such subspaces used is nml, then the worst-case

sparsity of b0, sF, is ð2nmax þ 2Þnml ¼ ðNFÞ1=3nml. So the

required number of measurements is

M � C2N
1=3
F nml ln4ðNFÞ: (26)

Moreover, we know nml � sD, where sD is the sparsity in

the Wigner D-function basis. Noting that we can relate NF

to ND as NF � C0ND (set C0 ¼ 6, for example), we can also

use the condition

M � C2ðC0NDÞ1=3sD ln4ðC0NDÞ: (27)

When comparing the scaling of M in the Fourier basis to the

Wigner D-function basis (12), we have (ignoring log fac-

tors) N
1=3
D and N

1=6
D , respectively. By going to the Fourier

basis, we gain a factor of N
1=6
D , which is slightly worse.

However, the method presented here does not require sam-

pling from arbitrary points on SOð3Þ; it sub-samples the

Nyquist grid, which is much easier for measurement devices

to achieve. As a further note, the structure of the Bml is such

that this worst-case increase in sparsity when transforming

from the Wigner D-function to Fourier basis is attained only

when aml
n 6¼ 0 for n ¼ nmax. This is typically not the case, as

larger aml
n tend to be at lower n, so the bound nml � sD is

likely loose. Thus, in practice, we might expect better a bet-

ter scaling of M than what we see in (27).

Remark 9. For emphasis, we compare the result of

Theorem 7 to the classical Nyquist sampling approach in

EM, which uses a l ¼ 61 probe. In the classical approach,

the number of measurements must scale with N
2=3
D . The

result in (27) requires that M scales with N
1=3
D times log fac-

tors. Ignoring the constants and log factors, this beats the

classical l ¼ 61 Nyquist approach by a factor of N
1=3
D .

Importantly, the sampling required here is to take a size M

subset of the grid on T3 [and so SOð3Þ]. This requires

accessing a subset of the positions the classical approach

uses on the sphere enclosing a device, unlike the results in

Ref. 22, which require arbitrary positions.

Remark 10. In the proof of Lemma 6 (see Appendix),

we extended the limits of the Fourier series indices to

contain an even number of frequencies in m, l, and m0.
The purpose of this is so that the Nyquist sampling grid

given by ðaj;bk;clÞ¼ð2pj=ð2nmaxþ2Þ;2pk=ð2nmaxþ2Þ;2pl=
ð2nmaxþ2ÞÞ with j;k;l2f�nmax�1;�nmax;…;nmaxg results

in each measurement on SOð3Þ corresponding to two or

more measurements on T3. This implies that satisfying the

bound on M in Theorem 7 requires the number measure-

ments on SOð3Þ to be at most M=2. Contrast this with an

odd grid, which has no repeated points, and thus the number

of measurements needed on SOð3Þ is M. In more detail, the

even grid results in the points on the poles b¼0 or b¼p
being sampled; thus, there is a degeneracy in the choice of

non-polar angles aj and cl at the poles. At b¼0, any points

with ajþcl¼q for fixed q represent the same physical mea-

surement. The condition for b¼p is ajþp�cl¼q for a fixed

q. This fact results in 2nmaxþ2 repeated points in T3 when a

pole is measured in SOð3Þ. Any other non-polar points have

two repeated measurements, where ðaj;bk;ckÞ is the same

measurement as ðajþp;�bk;ck�pÞ.
Remark 11. Consider Lemma 6 and take the special

case where one has a set of SW/SH coefficients. Assuming

that the field is measured ideally at a point amounts to set-

ting all aml
m0 with l 6¼ 0 or m 6¼ 0 to zero. In this case (ignor-

ing the noise), the measurements wðaj; bj; cjÞ depend only

on ðbk; clÞ or ðaj; ckÞ, respectively. The result is that we can

consider this special case as a two-dimensional Fourier

series after appropriate normalization. Thus, using nearly

the same analysis that results in Theorem 7, we arrive at

being able to use QCBP to solve for the non-zero entries in

b from a sub-sampled 2DDFT so long as

M � C2sF ln4ðNF;2DÞ; (28)
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where NF;2D ¼ ð2nmax þ 2Þ2 is the number of basis functions

in the band limited 2DDFT. Carrying out the same analysis

as the above remarks and noting the worst-case sF is

2nmax þ 2 ¼
ffiffiffiffiffiffiffiffiffiffiffi
NF;2D

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
C00NSH

p
(using say C00 ¼ 2) times

the number of m (l) subspaces used, which is at most sSH,

we can also use

M � C2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
C00NSH

p
sSH ln4ðC00NSHÞ: (29)

As with the full SOð3Þ case, using the Fourier basis Nyquist

grid on the sphere for CS results in an increase in the num-

ber of measurements required when compared to the best

case scaling for SW/SH series of OðN1=6
SH Þ. Again, however,

the Fourier method does not require being able to sample

the sphere at any arbitrary point like the method achieving

OðN1=6
SH Þ does.

IV. EXAMPLES AND NUMERICAL INVESTIGATIONS

A. Analysis of basis transformation

The transformation from the Wigner D-function to

Fourier basis in Lemma 6 will affect the sparsity of the coef-

ficients. From the form of the transformation, we can see

that this mapping is likely to increase the sparsity, but only

within already populated m; l subspaces. This becomes

even more apparent if we look at the structure of the entries

of Bml.

Investigating many examples of Bml for a different m,

l, and nmax reveals a common structure these matrices share.

This structure can be seen in Fig. 2, which shows that this

structure is triangle-like, with zero entries in the gray

regions and non-zero entries in the region containing the

arrows. This structure is manifest in the proof of Lemma 6

[see (A17) in the Appendix]. However, this equation does

not give straightforward insight into how the non-zero ele-

ments behave. Our investigations show that the overall trend

is given by the two curves in the bottom of Fig. 2 paired

with their corresponding direction in the depiction of the

matrix. Pairing these diagrams, we see that rows tend to

decrease as we increase along the columns (see the horizon-

tal line), but not to zero. We also see that elements along the

lines parallel to the jm0j ¼ n line also decay, but not to zero.

The triangle-like structure of the Bml also implies that

we can make statements about the sparsity sF in the Fourier

basis if we know properties of the aml
n in each m; l sub-

space, i.e., properties about the symmetry of the field or the

spatial variation of it. For example, if we know that the dif-

ferent m; l subspaces have different cutoffs in n, which we

can label nml
max, then the sparsity in the Fourier basis satisfies

the bound

sF �
X

m;l: aml
n 6¼0

ð2nml
max þ 1Þ: (30)

As a note, the different nml
max for each m; l subspace can be

seen as smoothness criteria on the function wða; b; cÞ if one

takes the nml
max to be decreasing with increasing jmj and jlj.

B. Analysis of sparsity change with random
coefficients

To get more intuition behind how the Fourier sparsity

sF depends on the Wigner D-function sparsity sD in general,

we numerically test this dependence as the basis is changed

with a band limit of nmax ¼ 15 for ease of computation. In

particular, we look at an analog of the case where an ideal

probe is used. This choice of probe means that the Wigner

D-function coefficients are only non-zero for l¼ 0. For our

analogous setup, we pick a sparsity sD, uniformly at random

set sD coefficients am0
n ¼ 1, and then transform to the

Fourier basis and calculate sF. This is repeated for 100 trials

with each value of sD and averaged over all trials for a given

sD. The results are plotted in Fig. 3. While this is not exactly

representative of typical spherical field measurements, since

the aml
n typically will not all be equal, Fig. 3 shows how sF

FIG. 2. (Color online) Bml structure. Shown is a depiction of the non-zero

entries of the transformation matrix from the Wigner D-function basis to

the Fourier. The triangle-like structure helps visualize how sparsity can

change between bases.

FIG. 3. Average sF versus sD. The average Fourier sparsity level, sF, is

shown as a function of Winger D-function basis sparsity level, sD. Wigner

D-function coefficients are randomly set to one and transformed to the

Fourier basis where the sparsity level is averaged over 100 trials.
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can begin to saturate (the maximum possible sF is 1024) and

become problematic for CS with lower sD when there is no

structure to the coefficients. As a note, this experiment is

likely to fare worse than real devices; most devices of inter-

est have some amount of symmetry or structure in regard to

which m; l subspaces are non-zero.

C. Ideal and non-ideal probe measurements
of directed speaker

In actual measurement systems, it is typical to use devi-

ces that are as ideal as possible. In many acoustic systems,

this means an ideal probe is used, and the field is measured

directly. Such probes are only sensitive to l¼ 0 SW modes

in their coordinate system. In the EM case, using an ideal

probe means that the probe is only sensitive to l ¼ 61

SWs. Moreover, among the fields that one characterizes

using spherical field measurements, it is common to see

fields with varying levels of symmetry. For example, the

sound field radiated from a box speaker, a transducer, or a

spherical array of transducers may have varying levels of

rotational symmetry along their main beam. If this main

beam is aligned along the azimuthal axis of the measure-

ment system, then the more symmetric the field is, the lesser

the number of m 6¼ 0 SW modes that will be needed. With

this idea in mind, we investigate the change in sparsity

transforming from the Wigner D-function to the Fourier

basis for the coefficients of an example speaker at three

frequencies,

(1) Case 1 (C1): 1098 Hz;

(2) Case 2 (C2): 1400 Hz;

(3) Case 3 (C3): 1895 Hz.

These frequencies are selected so that they provide vari-

ous levels of axial symmetry as determined by the fractional

contribution the speaker’s m 6¼ 0 SW modes make to the

square of the ‘2 norm of the SW coefficients.

The specific speaker we consider is driver 1 of the IEM

loudspeaker cube,45 for which directivity measurement data

are openly available.46 SH coefficients for the speaker at

various frequencies are calculated using the open-source

code made available by Ahrens and Bilbao11 and Ahrens47

(which also contains the directivity measurement data for

the IEM loudspeaker cube). This code fits the loudspeaker

measurements to a SH series with band limit nmax ¼ 17. For

ease of simulation, we truncate this data to nmax ¼ 15. From

the SH coefficients, we calculate the SW coefficients am
n by

dividing out the appropriate spherical Hankel function eval-

uated at the distance between the probe coordinate system

and the speaker coordinate system, rab¼ 0.75 m. In the orig-

inal data output from the code in Ref. 47, the main beam of

the speaker is along the negative y axis. To get the beam

along the azimuthal (z) axis of the spherical measurements,

we rotate the output coefficients using Wigner D-

functions.36 As a note, we normalize the coefficients to have

an ‘2 norm of 1, i.e.,
P

n;mjam
n j

2 ¼ 1. The relative magni-

tudes of the SW coefficients in dB,

Rel:Mag: am
n ¼ 20 log10

jam
n j

max
n;m
jam

n j

 !
; (31)

are presented in Fig. 4. As can be seen in Fig. 4, the contri-

bution of the m 6¼ 0 modes to the l2 norm squared increases

with frequency. In particular, C1 has 0.45% of the signal’s

l2 norm squared in the m 6¼ 0 modes, C2 has 1.05%, and C3

has a contribution of 2.22%.

The Wigner D-function coefficients for the speaker,

aml
n , are a product of the SW coefficients of the source, am

n ,

and the response constants, Cl
n . That is, aml

n ¼ am
n Cl

n . Since

the response constants also have an effect on the sparsity

and are a result of the probe, we will test the change in spar-

sity from the Wigner D-function basis to the Fourier basis

with an axisymmetric probe as well as non-axisymmetric

probes. The baseline probe we select is the ideal probe. In

the axisymmetric case for each frequency, the response con-

stants are taken to be ideal for the 1098 Hz signal and are

equal to C0
n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1
p

=4p
� �

hð1Þn ðkrabÞ with the remainder

being zero. Here, hð1Þn is the spherical Hankel function of the

FIG. 4. (Color online) Source spherical wave coefficients. Shown are spheri-

cal wave coefficient magnitudes up to the band limit nmax ¼ 15 for the IEM

loudspeaker cube driver 1 at 1098 Hz (a), 1400 Hz (b), and 1895 Hz (c).
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first kind, and k is the wavenumber of the 1098 Hz sound

field. We use this same probe for all fields, so we avoid

introducing variations in the ‘2 norm of the Wigner D-func-

tion coefficients by changing the probe. For non-ideal probe

measurements, we assume the non-ideal nature of the probe

comes from the probe being more sensitive to high-order l
modes at two increased levels (specified below). This sensi-

tivity is set to be randomly selected. Thus, C1–C3 will each

have three sub-cases where the response constants will be

(a) C0
n ¼

ffiffiffiffiffiffiffiffi
2nþ1
p

4p hð1Þn ðkrabÞ; Cm
n ¼ 0 otherwise;

(b) C0
n ¼

ffiffiffiffiffiffiffiffi
2nþ1
p

4p hð1Þn ðkrabÞ; <ðC61
n Þ;=ðC61

n Þ 
 N ð0; 0:01

maxnjC0
njÞ; Cm

n ¼ 0 otherwise;

(c) C0
n ¼

ffiffiffiffiffiffiffiffi
2nþ1
p

4p hð1Þn ðkrabÞ; <ðC61
n Þ;=ðC61

n Þ 
 N ð0; 0:01

maxnjC0
njÞ; <ðC62

n Þ;=ðC62
n Þ 
 N ð0; 0:001maxnjC0

njÞ;
Cm

n ¼ 0 otherwise.

To see the changes in sparsity for all of the above cases,

we compare the non-zero coefficients (to floating point

precision) sorted largest to smallest in both the Wigner D-

function basis and the Fourier basis, where each set is nor-

malized with respect to the largest coefficient in the given

basis. Explicitly, we plot the coefficient relative magnitude

in dB given by

Coefficient relative magnitude ¼ 20 log10

jcjj
jc1j

� �
; (32)

where the cj; j ¼ 1; 2;… are the sorted coefficients in either

the Wigner D-function basis or the Fourier basis. Along

with the coefficients, it is also informative to investigate the

effect of keeping only the nc largest coefficients in a given

basis. To that end, we also plot the coefficient error normal-

ized by the actual coefficient ‘2 norm squared in dB,

Normalized errorðc;ncÞ ¼ 10 log10

kcnc
� ck2

kck2

 !
; (33)

where c is a vector of coefficients, and cnc
is the vector of

with all but the nc largest coefficients set to zero. We plot

the normalized error in the Wigner D-function basis, in the

Fourier basis, and then in the Wigner D-function basis after

keeping nc coefficients in the Fourier basis and transforming

back to the Wigner D-function basis.

The sorted coefficients and normalized errors for cases

C1a–c can be seen in Figs. 5–7. For the sake of brevity in

the main text, the corresponding plots for cases C2a–c and

C3a–c are included as supplementary files.48 If we compare

the number of non-zero coefficients for a fixed frequency

but increasing probe asymmetry, e.g., C1a–c in Figs. 5–7,

then we see the number of non-zero coefficients increases

by a factor of �3 from case a to b and then a factor of �5

from a to c, regardless of basis. These scaling factors are in

line with the scaling in the number of non-zero response

constants Cm
n between the cases. Thus, ideally, the asymme-

try of any probe used is small so that the additional non-zero

coefficients induced will be smaller than the SW coefficients

one is trying to recover. This trend continues for C2a–c and

C3a–c in the supplementary material.48 Comparing the

number of non-zero coefficients as we increase sound fre-

quency but keep the same response constants by using Figs.

5–7 and the supplementary material,48 we observe that the

number of non-zero coefficients in the Fourier basis is

approximately three times that of the Wigner D-function

basis for each case. These results are much better than the

worst case, which would be an increase by a factor of

�2nmax þ 1 (since one coefficient per m; l subspace in the

Wigner D-function basis can map to 2nmax þ 1 in the

Fourier basis).

In terms of the normalized error, in Figs. 5–7 and the

supplementary material,48 we see that the errors drop below

�30 dB well before all coefficients are being kept. The most

important curve is the green dotted curve (keeping nc coeffi-

cients in the Fourier basis and transforming back to the

Wigner D-function basis), since this is the most relevant

number for the method we propose. This implies that the

coefficients in the Fourier basis are compressible and CS

recovery with smaller sparsities sF should be reasonably

accurate. In fact, in all cases, we see a very rapid drop to

near �15 dB or better in the first nc � 20 coefficients, with

slower gains in accuracy after that. Last, we note that the

Fourier transformed to Wigner D-function curves (green

dotted) have a larger tail. This is as expected from the

FIG. 5. (Color online) Sorted coefficients and normalized error case C1a.

The coefficient relative magnitude (a) in the Wigner D-function and Fourier

bases rapidly decays initially, indicating compressibility in either basis. The

normalized error (b) drops below �30 dB before all coefficients are kept in

each case, indicating CS recovery with smaller sparsities sF should give

accurate results.
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broadened tail we see when looking at the sorted coefficients

in the Fourier bases.

D. CS recovery

In this section, we demonstrate the recovery of the

sound field emitted by the IEM loudspeaker cube driver 1 at

1098 Hz by solving the two-step problem in (A11) and

(A12) using CS according to Theorem 7. For this demon-

stration, we simulate noiseless measurements of the sound

field emitted by the IEM loudspeaker cube driver 1 at

1098 Hz taken by an ideal probe on the sphere of radius

rab¼ 0.75 m. Using the ideal probe implies that measure-

ments w collapse to the field value at a position on the

sphere specified by ða; b; cÞ according to Fig. 1 and the asso-

ciated discussion in Sec. II (see Sec. II also for a brief dis-

cussion of this collapsing). Thus, measurements are

simulated by straightforwardly calculating the field value

for a given position on the sphere by using the SW coeffi-

cients extracted as described in Sec. IV C. As a further note,

using an ideal probe implies that the coefficients aml
n are

zero for all l except l¼ 0. Since these coefficients are zero

and the DFT associated with the l index is no longer

needed, the 3DDFT from Theorem 7 is reduced to a 2DDFT

as discussed in Remark 11.

We can compare the above reconstruction approach

with classical Nyquist-based measurements and the algo-

rithm from acoustics.24 In this classical algorithm, the

number of measurements is dictated by the Nyquist sam-

pling theorem, and, for the band limit nmax ¼ 15, it requires

a minimum of 496 measurements for a perfect reconstruc-

tion with no measurement noise.24 In this experiment, we

randomly select 400 measurement positions, which results

in 306 unique physical measurements [due to random selec-

tions repeating points on SOð3Þ; see Remark 10]. When

measurements are noiseless, basis pursuit, not QCBP, is

used. The reconstructed sound field along with the original

and the relative error along the / ¼ 0 axis are shown in Fig.

8. The reconstructions are plotted in terms of magnitude rel-

ative to the maximum actual field in dB,

Relative magnitude ¼ 20 log10

jF̂j
max
a;b;c
jFj

0
@

1
A; (34)

and the relative error is given in dB as

Relative error ¼ 20 log10

jF� F̂j
jFj

 !
: (35)

As can be seen, the sub-sampled 2DDFT performs well with

the relative error near �30 dB over most of the h range. As a

note, using CS with SHs and random measurements on the

sphere can nearly halve the number of measurements

reduced and maintain similar accuracy, as expected when

FIG. 6. (Color online) Sorted coefficients and normalized error for case

C1b. The coefficient relative magnitude (a) and the normalized error (b)

show trends similar to those seen in Fig. 5, so the same conclusions apply.

Any scaling in the number of non-zero coefficients and error decay is pro-

portional to the increased asymmetry of the selected probe.

FIG. 7. (Color online) Sorted coefficients and normalized error for case

C1c. Again, the coefficient relative magnitude (a) and the normalized error

(b) show trends similar to those seen in Figs. 5 and 6. Thus, the same con-

clusions apply. Scaling in the number of non-zero coefficients and error

decay is again proportional to the increased asymmetry of the selected

probe.
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comparing Theorem 7 to Ref. 34. However, the sub-sampled

2DDFT method has the advantage of being sampled from a

sub-selection of the Nyquist grid on the sphere.

E. CS recovery versus measurement number

In this section, we investigate CS recovery using the

2DDFT method developed in this paper compared to the

continuous Wigner D-function approach developed in Ref.

22 with l¼ 0 functions only (i.e., rescaled spherical har-

monics). We do this by using each method to solve for

the coefficients in cases C1a, C2a, and C3a as we vary the

number of measurements used. In particular, we look at the

relative error in the recovered partial wave coefficients

given by

Relative error ¼

Xnmax

n;m

jam
n � âm

n j
2

Xnmax

n;m

jam
n j

2

: (36)

Here, the âm
n are the recovered SW coefficients, and am

n are

the actual SW coefficients. Again, as the number of ran-

domly selected measurements and the number of unique

“physical measurements” (simulated measurements corre-

sponding to unique positions on the sphere) will be different,

we plot the relative error as a function of the average

number of unique physical measurements over 25 trials

while varying the number of randomly selected measure-

ments in the Fourier domain. The results of this are in

Fig. 9. For each case, the 2DDFT CS and the continuous

Wigner D-function CS approaches perform similarly when

the number of physical measurements is less than 300. Over

300 measurements, however, the Wigner D-function method

improves relative to the 2DDFT CS method. This can be

explained by the fact that the Wigner D-function method

has a smaller dimension for the coefficient space, so with

high sample numbers, the problem can be close to fully

determined. Note that as the number of physical measure-

ments approaches the fully sampled Nyquist grid (496 mea-

surements), the accuracy of the reconstruction becomes

nearly perfect for the 2DDFT CS approach, as expected.

The approach in Lemma 6 and the statement of

Theorem 7 do not explicitly allow for sampling grids that

are denser than the Nyquist rate as they are written.

However, a straightforward generalization of Theorem 4

allows for a measurement matrix that is a selection of col-

umns from a unitary matrix in a larger dimension. For exam-

ple, one can choose a sampling grid that is a multiple of the

Nyquist rate, select the columns of the Fourier matrix that

correspond to the b coefficients needed in Lemma 6, giving

a tall matrix, and then consider the measurement matrix that

is a random sub-selection of rows from this tall matrix.

Going through such an analysis results in an identical scal-

ing in the number of measurements as stated in Theorem 7

and the remarks following it. Thus, we can investigate the

performance of the 2DDFT CS method as the grid density

increases.

To that end, we compare the 2DDFT CS method as a

function of the number of unique physical measurements and

increasing sample grids. It is also interesting to include in this

comparison a similarly sampled Wigner D-function-based

FIG. 8. (Color online) Near-field reconstruction. Shown is example field

reconstruction for case C1a (a) and relative error (b) using the sub-sampled

2DDFT. This reconstruction uses 306 unique measurements, while classical

Nyquist reconstruction would require 496 measurements.

FIG. 9. (Color online) Relative error versus measurement number in cases

C1a, C2a, and C3a for 2DDFT CS and continuous Wigner D-function CS.

For each number of measurements, the relative error is averaged over 25 tri-

als. Both CS methods perform similarly for cases C1a, C2a, and C3a until

about 300 measurements, where the Wigner D-function method begins to

perform better. By this sample number, the Wigner D-function method is

close to fully determined, while the Fourier method is still under-sampled.
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approach. In particular, although there is no a priori reason

to believe using a Wigner D-function measurement matrix

sampled on the Nyquist grid should work, we can test to see

if using the same samples as the proposed CS method gives

reasonable results. To compare these, we first reconstruct

C1a by first randomly selecting measurements from the

Nyquist grid and integer multiples of it on the sphere (i.e., n
times as many available samples spatially in each direction).

We use these samples to carry out the 2DDFT CS method.

Then we reconstruct the C1a SW coefficients by randomly

selecting the same number of physical measurements from

the same sample grids and carry out BP using a Wigner D-

function measurement matrix with l¼ 0 functions only (i.e.,

rescaled spherical harmonics) and the appropriate precondi-

tioning from Ref. 22. In the continuous case, the precondi-

tioning is so that samples can be uniformly selected from

the domain, so we heuristically view this approach as dis-

crete samples from the appropriate uniform continuous case.

The results of this can be seen over the range of possible

measurements in Fig. 10, where we average over 25 trials at

each number of measurements. For small sample numbers

from all grid densities, the 2DDFT CS approach performs

comparably to the gridded Wigner D-function approach.

Near full sampling, the gridded Wigner D-function approach

performs slightly better. The reasoning for this is the same

as seen in the continuous case presented in the text related

to Fig. 9. Interestingly, when the measurement number is

closer to full sampling, increasing the grid density causes an

increase in relative error for both methods. We discuss this

worsening of the 2DDFT CS method in Sec. IV F. As a note,

we would like to emphasize that the on-grid Wigner D-func-

tion approach does not provide a theoretical guarantee like

Theorem 7 does for the 2DDFT CS method. Thus, its

usefulness cannot be guaranteed to extend to other coeffi-

cients, nor can we guarantee that it will degrade gracefully

with noise.

F. SW coefficient recovery in the presence of noise

The examples above all contained no measurement

noise. In the presence of measurement noise, even classical

Nyquist sampling approaches will have their performance

degrade. However, to improve accuracy in the presence of

noise, oversampling at a rate greater than the Nyquist rate is

common. For example, we simulate measurements of the

sound fields generated by C1a, C2a, and C3a with mean

zero and variance that is 40 dB below the peak value for

each case. Using these simulated measurements, then we

plot the coefficient relative error, (35), resulting from the

classical fully sampled Fourier method in Ref. 24. The

results are given in Fig. 11. As can be seen in Fig. 11,

increasing the sampling to five times the Nyquist rate results

in a decrease in the relative error of nearly 15 dB for each

case. Note the curves are split apart because the peak field

value, and thus total noise, increases from C1a to C2a and

again to C3a.

As discussed in Sec. IV E, we can increase the sample

grid in the 2DDFT CS method and use it under the same

guarantees as seen in Theorem 7. This allows us to directly

compare our method with those results in Fig. 11. To that

end, we first investigate the relative error from CS recon-

structions of the SW coefficients in C1a, C2a, and C3a with

the �40 dB Gaussian noise used in Fig. 11 as a function of

the number of physical measurements and the grid density.

For each sampling number and grid density, we average the

relative error over 25 trials in Fig. 12. As can be seen in Fig.

12, for a fixed number of measurements, the relative error

slightly degrades as the grid density increases. One might

assume the accuracy should be constant with the fixed num-

ber of measurements. However, this is not the case. In par-

ticular, for a fixed number of physical measurements, the

likelihood of the measurement matrix being worse for CS

increases as the sample grid increases. This is visualized in

Fig. 13, where we plot the coherence of the column

FIG. 10. (Color online) Coefficient relative error for on-grid Fourier CS

versus on-grid Wigner D-function CS. Averaging over 25 trials for each

number of measurements, the proposed Fourier-based CS performs slightly

worse than the on-grid Wigner D-function CS when sampling from the

Nyquist grid. When the grid density increases, the performance of both

methods degrades slightly. Note that the on-grid Wigner D-function

approach does not have any theoretical backing like the Fourier method

does in Theorem 7.

FIG. 11. (Color online) Classical Fourier reconstruction with measurement

noise. SW coefficients from C1a, C2a, and C3a were reconstructed accord-

ing to Ref. 24 with zero-mean Gaussian measurement noise whose variance

is 40 dB below the maximum field value in each case. With a band limit of

nmax ¼ 15, the Nyquist rate sampling requires 496 measurements.
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normalized version of UF for the 2DDFT CS method. The

coherence of a matrix U 2 C
M�N with normalized columns

is defined as35

lðUÞ ¼ max
1�i6¼j�N

j/H
i /jj; (37)

where /i is a column of U. To get physical intuition for this

decrease in performance, we hypothesize the following. If

we sample near the Nyquist rate, then the recovery should

be near perfect, but if the grid density increases, then mea-

surements have an increased likelihood to cluster in certain

locations, becoming more coherent and leaving larger gaps

of the field unmeasured. We note this is a hypothesis since

clustering measurements is a statement about the rows of

the measurement matrix, while the coherence is a measure

of column-wise relationships, and so rigorous statements

about the relationship are likely to be much more subtle.

The intent of increasing the sampling rate in the classi-

cal Fourier approach to recover the SW coefficients in Ref.

24 is to increase the method’s robustness to noise. Figure 12

showed that increasing grid density and keeping the sample

number the same does not improve performance when using

CS with Lemma 6. However, if we consider fixed sampling

densities (number of measurements used divided by the total

possible number) as the density of the sampling grid is

increased, we see improvements in our proposed CS

approach. Figure 14 shows these results for C1a to C2a and

again to C3a with the same noise as before. Similar to the

classical Fourier case, for a fixed sample density and

increased grid density, the relative error decreases for each

case tested. This can be interpreted as de-noising that occurs

by promoting more sparse coefficients in QCBP.

Interestingly, the de-noising from the proposed CS approach

with a denser than Nyquist grid and sub-sampling gives bet-

ter results than the de-noising attained from using oversam-

pling with the method from Ref. 24. This indicates, at least

in this case, the de-noising benefits of CS via QCBP are an

added benefit beyond simply decreasing the required num-

ber of measurements. Thus, if one is currently using Nyquist

sampling at some denser grid than Nyquist, using the CS

approach and fewer measurements may improve accuracy.

For example, CS with a sample density of nearly 1/3 at two

times the Nyquist rate beats the classical Fourier approach

with sample density 1 at two times the Nyquist rate by

nearly 20 dB or more in C1a, C2a, and C3a.

V. CONCLUSION

We have developed an approach to recover SW or SH

expansion coefficients using compressive samples taken

from a pre-defined grid. This approach not only avoids using

measurements at arbitrary positions on the sphere or SOð3Þ,
as is common for BOSs, but it does so while maintaining

robust reconstruction guarantees. For sufficiently sparse

FIG. 12. (Color online) CS coefficient relative error versus number of phys-

ical measurements in cases C1a, C2a, and C3a. Shown is the 2DDFT CS

method for cases C1a, C2a, and C3a with added zero-mean Gaussian mea-

surement noise with variance 40 dB below the maximum field value. For

each case, 2DDFT CS with a fixed number of samples and increased grid

density results in slightly degraded relative error. Note that at the band limit

of nmax ¼ 15, the Nyquist grid has 496 possible measurements.

FIG. 13. (Color online) Coherence of UF in two dimensions (2D). The aver-

age coherence of the 2DDFT CS measurement matrix is suggestive of

decreased performance for increased sample grid density and fixed mea-

surement number. Averaging is taken over 25 trials for each combination of

grid density and measurement number.
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signals in both domains, the number of measurements

required for robust reconstruction has sub-linear scalings

with the basis dimension. These scalings are slightly worse

than the best cases from the literature;22,44 however, these

reference methods require samples from arbitrary positions

on the sphere and SOð3Þ.
Using our proposed CS approach, we numerically com-

pared its results with a commonly used Fourier approach to

recover SW or SH expansion coefficients. In our tests, our

on-grid CS approach performed comparably in the presence

of noise when a Nyquist grid was used. However, when the

grid sampling was increased to two times the Nyquist rate,

our CS approach boasted increased de-noising capabilities

while using fewer measurements. For the three examples

used to test the CS approach, the relative error for the CS

method beats the classical Fourier approach by 20 dB or bet-

ter. Moreover, this was achieved while using a third of the

measurements needed for the classical Fourier approach.

The CS approach developed in this paper allows for

field reconstructions in various application areas like acous-

tic spherical holography, loudspeaker characterizations, and

even EM antenna characterizations. In some of these cases,

measurements are restricted to certain areas on the sphere or

SOð3Þ.40 The work in Ref. 40 can straightforwardly be gen-

eralized to the approach developed in this paper so that

gridded and restricted measurements can be used for SW or

SH field reconstructions. However, the effect of compound-

ing transformations (continuous Wigner D-function to dis-

crete Fourier and then to a Slepian basis) on the

conservation of sparsity throughout the bases requires fur-

ther investigation and would be a suitable future direction of

study.

APPENDIX: PROOF OF LEMMA 6

First, we note that the Wigner d-function with integer n
is periodic on 2p (Ref. 36) and can be expressed as a Fourier

series. This Fourier series is band limited and has the form17

dlm
n ðbÞ ¼ il�m

Xn

m0¼�n

Dm0;l
n Dm0;m

n e�im0b; (A1)

where

Dm0;l
n ¼ dm0l

n

p
2

� �
; (A2)

Dm0;m
n ¼ dm0m

n

p
2

� �
: (A3)

Substituting (8) and (A1) into (7) gives

wj ¼
Xnmax

n¼0

Xn

m;l;m0¼�n

vml
n e�imcj�ilaj�im0bj þ gj; (A4)

vml
n ¼ il�mDm0;l

n Dm0;m
n aml

n : (A5)

We now reorder the sums so that the sum over n is on the

inside, yielding

wj ¼
Xnmax

m;l;m0¼�nmax

Xnmax

n¼nmin

vml
n e�imcj�ilaj�im0bj þ gj; (A6)

where nmin ¼ maxðjmj; jlj; jm0jÞ. In anticipation of benefits

in terms of measurements (see Remark 10), we extend the

ranges of the m0;m; and l sums to range from nmax�1 to

nmax, giving

FIG. 14. (Color online) CS coefficient relative error versus sample grid den-

sity in cases C1a, C2a, and C3a. With additive measurement noise, fixing

the sample density (measurement number divided by number of possible

measurements) and increasing grid density for cases C1a, C2a, and C3a

result in improved relative error using the 2DDFT CS method. In other

words, increasing the sampling rate and sample number improves the de-

noising achieved by the 2DDFT CS method and outperforms oversampling

with the classical method in Fig. 11. The noise used here is added zero-

mean Gaussian measurement noise with variance 40 dB below the maxi-

mum field value. The band limit used, nmax ¼ 15, results in the Nyquist grid

having 496 possible measurements.
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wj ¼
Xnmax

m;l;m0¼�nmax�1

Xnmax

n¼nmin

vml
n e�imcj�ilaj�im0bj þ gj; (A7)

where we define Dm0;m
n and Dm0;l

n to be zero if m0, m, or l is

�nmax � 1. Next, define the sum over n in (A7) as

bml
m0 ¼

Xnmax

n¼nmin

vml
n : (A8)

Thus, we arrive at a restatement of our problem in two parts.

First, we solve for the coefficients bml
m0 from the linear prob-

lem in (A9),

wj ¼
Xnmax

m;l;m0¼�nmax�1

bml
m0 e
�imcj�ilaj�im0bj þ gj: (A9)

This amounts to finding the Fourier series coefficients of w,

bml
m0 , from a set of measurements. Then we solve for the

Wigner D-function coefficients aml
n from the Fourier coeffi-

cients bml
m0 using the following linear inverse problem:

8m; l 2 f�nmax � 1;�nmax;…; nmaxg;

bml
m0 ¼

Xnmax

n¼nmin

vml
n ;

vml
n ¼ il�mDm0;l

n Dm0;m
n aml

n : (A10)

These equations can be equivalently written as matrix

equations,

w ¼ UFbþ g; (A11)

8m; l 2 f�nmax � 1;�nmax;…; nmaxg;
bml ¼ Bmlaml; (A12)

where UF is M � NF with NF being the number of band lim-

ited complex exponential functions NF ¼ ð2nmax þ 2Þ3.

Here, we have used

UF½ �i;j ¼ e�imðjÞci e�ilðjÞai e�im0ðjÞbi ; (A13)

~nmin ¼ maxðjmj; jljÞ; (A14)

aml ¼ aml
~nmin
; aml

~nminþ1;…; aml
nmax

� �T
; (A15)

bml ¼ bml
�nmax

; bml
�nmaxþ1;…; bml

nmax

� �T
; (A16)

for some ordering m(j), lðjÞ, m0ðjÞ, with the vector b corre-

spondingly arranged. The matrices Bml 2 C
dim1�dim2 with

dim1 ¼ 2nmax þ 2 and dim2 ¼ nmax þ 1� ~nmin have

elements

Bml½ �i;j ¼
wml; ji� nmax � 1j � ~nmin � 1þ j

0 otherwise;

(

wml ¼ il�mDi�nmax�1;l
~nmin�1þj Di�nmax�1;m

~nmin�1þj ; (A17)

where i ¼ 1; 2;…; 2nmax þ 2 and j ¼ 1; 2;…; nmax þ 1

�~nmin. The size of the matrix Bml can be seen from the fact

that there are no aml
n with n < ~nmin. The restriction on the

Bml values can be seen from the fact that Dm0;l
n Dm0;m

n ¼ 0

when jm0j � n.

Now select possible measurement points given by

ðaj; bk; clÞ ¼ ð2pj=ð2nmax þ 2Þ; 2pk=ð2nmax þ2Þ; 2pl=ð2nmax

þ2ÞÞ for j; k; l 2 f�nmax � 1;�nmax;…; nmaxg. We call this

the Nyquist grid on T3. Thanks to the double covering of

SOð3Þ by T3, the Nyquist grid on T3 straightforwardly maps

to a grid of measurement points on SOð3Þ. Rewriting (A9)

with these selected measurement points gives

wjkl ¼ wðaj; bk; clÞ

¼
Xnmax

l;m;m0¼�nmax�1

bml
m0 e

�i2pðljþmkþm0lÞ½ �=ð2nmaxþ2Þ þ gjkl:

(A18)

This can be recognized as the 3DDFT of the coefficients

bml
m0 . Thus, if we sample at a subset X of all of these possible

positions, we have the matrix problem,

N
�1=2
F w ¼ PXUFbþ N

�1=2
F g; (A19)

where NF ¼ ð2nmax þ 2Þ3, UF 2 C
NF�NF is the unitary

matrix representing the 3DDFT, and PX is the matrix select-

ing the subset of rows X of UF.
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