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Compressive Sensing With Wigner D-Functions
on Subsets of the Sphere
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Abstract—In this paper, we prove a compressive sensing guar-
antee for restricted measurement domains on the rotation group,
SO(3). We do so by first defining Slepian functions on a mea-
surement sub-domain R of the rotation group SO(3). Then, we
transform the inverse problem from the measurement basis, the
bounded orthonormal system of band-limited Wigner D-functions
on SO(3), to the Slepian functions in a way that limits increases
to signal sparsity. Contrasting methods using Wigner D-functions
that require measurements on all of SO(3), we show that the
orthogonality structure of the Slepian functions only requires mea-
surements on the sub-domain R, which is select-able. Due to the
particulars of this approach and the inherent presence of Slepian
functions with low concentrations on R, our approach gives the
highest accuracy when the signal under study is well concentrated
onR. We provide numerical examples of our method in comparison
with other classical and compressive sensing approaches. In terms
of reconstruction quality, we find that our method outperforms the
other compressive sensing approaches we test and is at least as
good as classical approaches but with a significant reduction in the
number of measurements.

Index Terms—Compressive sensing, antenna metrology, slepian
functions.

I. INTRODUCTION

IN ANTENNA design and metrology, characterization of an
antenna’s (or antenna array’s) far-field radiation profile is of

the utmost importance. This is especially true as 5G and beyond
devices are developed with increasing power, controllability, and
potential for secondary lobes to damage other devices when in
high power regimes [1]. While numerical simulations give an
ideal view of a device under test (DUT) far-field profile, it is
often necessary to physically characterize this far-field profile
to ensure manufactured devices actually meet design require-
ments. The now-canonical approach to characterizing a DUT far-
field profile is termed spherical near-field to far-field (NF2FF)
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transformation [2], which allows near-field measurements to be
transformed to a far-field characterization. Unfortunately, mea-
surements for characterizing DUTs are very time-consuming
and require large amounts of data, especially when higher fre-
quencies like those used in 5G technology are involved [2],
[3], [4]. Adding to the challenge, physical limitations of the
measurement apparatus can prohibit measurements from being
taken in certain regions of space. For example, when a DUT is
placed on a support structure with its main beam pointing up, it
may not be possible to accurately measure the bottom portion
of the near field.

Spherical NF2FF characterizations use near-field measure-
ments on a sphere enclosing the DUT to determine its field ex-
pansion coefficients in the band-limited spherical wave-function
(SW) basis. When characterizing electromagnetic (EM) devices,
vector SWs are used, and when characterizing an acoustic device
like a loudspeaker, scalar SWs are used (in-air acoustics require
only p-waves). The coefficients in these bases are sometimes
called spherical mode coefficients. With these coefficients in
hand, it is possible to determine the far-field radiation profile. A
common and accurate sampling approach for spherical NF2FF
transformations is the equiangular sampling pattern with fixed
polar and azimuthal step sizes [2], [5]. This approach uses classic
Nyquist theory. In the best case, using a probe that is only
sensitive to the lowest SW modes (a μ = ±1 probe for EM
applications, or an axisymmetric μ = 0 probe in acoustics), the
Nyquist-based approach requires a number of measurements that
is quadratic in the band-limit [2]. Even more measurements are
needed for high accuracy in the presence of noise. Interestingly,
this method can cope with restricted measurement regions [2],
[6]. In particular, the Nyquist-based method copes with mea-
surement restrictions by using measurements from available
positions and padding the remainder of the sphere with zeros.
The cost of this zero padding is that the field reconstruction
is accurate only in a subset of the measured region [2], [6].
However, this approach can still require many measurements
and the need to pad with zeros in unmeasurable regions is highly
unfavorable [7], [8].

Compressive Sensing (CS) has proved to be a powerful tool for
reducing the number of measurements needed to acquire signals,
provided they are sparse [9], [10], [11], [12], [13], [14], [15].
Sparse signals are those that, in some representation, contain a
small number of nonzero values. It is well-known that the SW
coefficients tend to be sparse and concentrated near the bottom
end of the band when the coordinate system for the SWs is
centered on the phase center of the DUT [3], [16]. Thus, when
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there are no measurement restrictions, CS-based random sam-
pling offers a way to reduce the number of measurements needed
for accurate field reconstructions [3], [4], [16], [17], [18], [19].
However, none of the recent work in this vein has developed an
approach that accounts for measurement restrictions. Motivated
by CS in NF2FF characterizations, in this paper, we develop a
general theory for CS that allows for measurements to be taken
on a restricted domain and can give field reconstructions within
that measured region.1

Every CS recovery problem involves a measurement matrix
relating the observed data to the unknown vector of interest.
When this matrix satisfies certain conditions, one can ensure that
CS recovery algorithms such as quadratically constrained basis
pursuit (QCBP), a form of �1 minimization, will achieve accurate
and robust recovery. Satisfying the Restricted Isometry Property
(RIP) [15] is one well-known sufficient condition for a measure-
ment matrix. An important class of measurement matrices that
satisfy the RIP are matrices generated by random sampling in a
Bounded Orthonormal System (BOS). Letting {fj(x)} denote a
set of uniformly bounded orthonormal functions, taking random
samples at locations {xi} yields a measurement matrix with
entries Φij = fj(xi). In such a setting, the number of measure-
ments to guarantee accurate CS recovery scales with the square
of the uniform bound. Much work has been devoted to showing
that certain classes of special functions can be used as BOSs [14],
[19]. The most important of these special functions for NF2FF
characterizations is the band-limited Wigner D-functions [19].

When collecting measurements for NF2FF characterizations,
the measurements must be corrected for the probe’s response to
the incident field (probe correction). Thus, these measurements
are taken in the probe’s coordinate system. As a result, the mea-
surements can be represented as a series of Wigner D-functions
whose coefficients are a combination of the transformation
constants and the SW coefficients [2]; see Section II-A. The
Wigner D-functions are an irreducible representation of the ro-
tation group SO(3) [20]; their arguments represent the position
on the sphere and the polarization angle for a measurement.
In [19], Bangun et al. showed that with a sufficient number of
measurements, the measurement matrix created from the BOS
of band-limited Wigner D-functions satisfies the RIP with high
probability. That work put CS for NF2FF on a solid theoretical
footing. However, since the domain for the Wigner D-functions
is all of SO(3), the theoretical guarantee in [19] holds only
when one is able to collect random measurements from the entire
domain. For cases involving device support structures or other
exclusions, there is as of yet no guarantee that CS can be applied
to measurements restricted to a portion of a sphere.

A. Approach and Contributions

In this work, we avoid the limitations present when using
the Wigner D-functions by transforming the measurement basis
to a different set of bounded orthonormal functions on the
rotation group, namely, a certain set of Slepian functions. Slepian

1Sections II to IV provide the general derivations and statements of results.
Due to their technical nature, proofs are provided as supplementary material.

functions were originally studied as the solution to the spectral
concentration problem [21], [22], [23], [24], i.e., the problem
of finding the functions within a certain band-limit that are
maximally localized to a spatial (or temporal) region, R. More
recently, Slepian functions have been used in various areas of
signal processing, from novel wavelet constructions [25] to new
tools in signal representation on the sphere [26], [27]. Slepian
functions form an orthogonal basis for band-limitedL2 functions
on their full domainD as well as onR ⊂ D [24]. In this paper, we
show this latter property enables CS recovery guarantees from
measurements on a restricted domain R. However, this benefit
comes at a cost. Ensuring the unit normalization of the Slepian
functions on R increases their uniform bound, particularly due
to “trailing” Slepian functions which are poorly localized to R.
This problem can be mitigated, though, if the signals one wishes
to recover using CS are reasonably localized to the measurable
domain R.

Mathematically, the approach we take to theoretically guar-
antee CS recovery on the restricted domain R is as follows. We
begin with the full SO(3) CS problem,

w = Φa+ η, (1)

where w is the vector of measurements of a function w(α, β, γ)
on SO(3), Φ ∈ C

M×N with M < N is the measurement matrix
of the band-limited Wigner D-functions sampled at the corre-
sponding locations (α, β, γ), and a is the vector of coefficients
for the band-limited Wigner D-function series. The direct CS
approach to this problem, as done in [19], requires collect-
ing enough random measurements from SO(3) and then using
QCBP (�1 minimization) to solve for the coefficient vector a.
The need for random measurements from SO(3) derives from
the fact that the Wigner D-functions are a bounded orthonormal
basis for SO(3) and CS theory for BOSs requires measurements
from the full domain of orthogonality [19]. As such, the problem
in (1) is not viable for CS when the measurements are limited
to R ⊂ D.

To avoid this orthogonality problem, we derive an invertible
transformation matrix, V , that maps Φ into a new measurement
matrix Φ′ containing Slepian functions on SO(3):

w = ΦV −1V a+ η = Φ′a′ + η. (2)

The Slepian basis inΦ′ = ΦV −1 is orthogonal onR as well as on
SO(3) anda′ = V a. Moreover, ifR is a latitudinal belt onSO(3)
where only the polar angle of the measurements is restricted, the
Slepian functions are bounded similar to the WignerD-functions
but with a factor λ ∈ (0, 1) of the Slepian concentration in the
denominator. Importantly, due to symmetry in the azimuthal and
polarization angles of measurement, we show that when V is
applied to a, it has a bounded effect on increasing the sparsity
level of the problem.

Due to the factor λ of the concentration, the bound on the
Slepian basis in Φ′ can become too large for CS guarantees to
be practical because there are Slepian functions whose concen-
tration is near zero. To avoid this, we partition the basis into two
sets: one set, Φ′

1, containing the Slepian functions with large
concentrations on R and the other set, Φ′

2, containing Slepian
functions with small concentrations on R. This partitioning
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re-expresses (2) as

w = Φ′
1a

′
1 +Φ′

2a
′
2 + η. (3)

In cases where w(α, β, γ) has little energy in the complement
of R, Rc, we can bound the contribution of Φ′

2a
′
2 and group it

with the noise term η. This results in the formulation

w = Φ′
1a

′
1 + η′, (4)

where a′1 are the coefficients of the Slepian functions in Φ′
1 and

η′ = η +Φ′
2a

′
2 is a noise term bounded by the sum of the noise η

and the energy of the w(α, β, γ) in Rc, the unmeasurable part of
SO(3). Thanks to the uniform bound and orthonormality onR of
the Slepian functions in Φ′

1, this new CS problem can be solved
using standard guarantees for BOSs with measurements only
taken on R. We emphasize that this partitioning of the problem
implies that solutions to this inverse problem will, like classical
zero padding, only estimate field values well within R; values
in Rc are not assumed to be correct.

In practice, for functions well-localized on the measurable
domain R, our approach is very competitive against other meth-
ods. Numerical experiments show that it is possible to achieve
similar CS enabled reductions in measurements as were seen
over the full domain in [19]. In particular, our example shows
that using only around 60% as many measurements as the
classical restricted FFT method results in similar or even better
reconstruction performance and does not require an equiangular
sampling pattern. Moreover, when compared to various ad hoc
restricted measurement adaptations of the work in [19], our
method performs better when the measurement restrictions are
sizable. In contrast, when measurements can be taken over all
of or nearly all of the domain, CS using Wigner D-functions
as in [19] is more favorable. This difference in performance
is due to the difference in approach when constructing the
Slepian function BOS on SO(3), which prioritizes the control
of function orthogonality at the cost of an increased function
bound. However, it is this control over orthogonality relations
when using Slepian functions that enables theoretical recovery
guarantees and practical gains in terms of the required number
of measurements in the restricted measurement cases.

B. Notation

In this paper, we use the following notation and conventions.
The sum

∑nmax

n,m,μ is used to mean
∑nmax

n=n0

∑n
m=−n

∑n
μ=−n,

where n0 = 1 for EM applications and n0 = 0 for acoustics
applications. We use i =

√−1 as the unit imaginary number. An
over-line represents complex conjugation, e.g., a. We represent
the Hermitian conjugate of a vector or matrix with a ∗, e.g., a∗ =
aT , whereT denotes the transpose. The norm ‖ · ‖p with p ≥ 1 is
the standard �p vector norm. ‖a‖0 is the �0 “norm” counting the
number of nonzero entries in a vector a. ‖ · ‖∞ is either the �∞
or L∞ norm, which should be discernible from the context. As
usual, for a vector a, ‖a‖∞ = maxi(|ai|), and for a function f ,
‖f‖∞ = inf{c ≥ 0 : |f(x)| ≤ c for almost every x}. For Euler
rotations, we use the zyz′ and passive transformation conven-
tions.U(a, b) is the uniform distribution on the interval [a, b]. We
use i.i.d. to abbreviate independently and identically distributed.

II. BACKGROUND

A. Near Field to Far-Field Antenna Measurements

One of the main approaches to characterize a DUT far-field
radiation pattern is to use a spherical NF2FF transformation. In
the NF2FF transformation, near-field measurements are taken
on a sphere enclosing the DUT and used to solve for SW
coefficients in a band-limited SW series. In theory, an infinite
series expansion for DUT’s field should be used. In practice,
terms above a band-limit, nmax, are so small that they can be
ignored. In EM, this band-limit is imposed by the antenna’s
electrical size and typically set to nmax = kra + 10, where k
is the wavenumber of the emitted radiation and ra is the radius
of the smallest sphere circumscribing the radiating parts of the
antenna. A similar procedure is used in acoustics. Once the
expansion coefficients up to nmax are determined, the radiated
field of the DUT can be computed anywhere outside of the
minimum circumscribing sphere.

In EM applications it has become recognized that the SW
coefficients are sparse/compressible when an antenna’s phase
center coincides with the center of the near-field measurement
sphere and the antenna’s main beam is properly oriented [3],
[16]. When the DUT field is measured, however, the SW coeffi-
cients are not measured directly. Instead, if multiple scattering is
negligible, the probe’s response to the incident field is measured.
This response is related to the original field SW coefficients
by rotation and translation transformations as well as probe
correction if a non-ideal probe is used [2], [5]. With a fixed
translation distance, this transformation results in a series of
Wigner D-functions. Thus, the quantity measured is,

wj = w(αj , βj , γj) =

nmax∑
n,m,μ

amμ
n Dμm

n (αj , βj , γj) + ηj , (5)

where j indexes the measurement position (αj , βj , γj) ∈
SO(3), ηj is additive measurement noise, and Dμm

n (α, β, γ)
are the Wigner D-functions with indices satisfying n ∈
{0, 1, . . . , nmax} and m,μ ∈ {−n,−n+ 1, . . . , n− 1, n}.

The transformations described above result in the series coef-
ficients amμ

n being a product of the SW coefficients, the transla-
tion transformation, and the probe’s receiving coefficients. This
product takes the form of amμ

n =
∑νmax

ν=ν0
Am

n Bμ
n,νR

μ
ν , where

the Am
n are the SW coefficients, Bμ

n,ν contains the translation
transformation information, Rμ

ν are the receiving coefficients of
the probe, and ν0 = |μ| �= 0 and ν0 = |μ| for EM and acoustics
SWs, respectively. If an ideal probe is used, then the receiving
coefficients are proportional to the Kronecker delta function.
Typically, one chooses a probe as close to ideal as possible and
thus, non-ideal probes are electrically small with a significant
amount of rotational symmetry, i.e., Rμ

ν ≈ 0 for νmax � 10 and
|μ| � 1. Consequently, the amμ

n will be sparse/compressible if
Am

n coefficients are sparse. Thus, the spherical NF2FF problem
is an inverse problem that might be solved using CS. Specifically,
if we first recover the Wigner D-function coefficients using CS,
the SW coefficients can be readily estimated. As a note, even
if a slightly non-ideal probe is used, CS should be viable with
increases in the number of measurements. This is because the
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effect will be to moderately increase the sparsity level of the amμ
n

because non-ideal probes have nonzero receiving coefficients for
higher μ.

In the above, the Wigner D-function is defined by

Dμm
n (α, β, γ) = (4π2)−1/2e−iμαdμmn (β)e−imγ , (6)

where dμmn is the real Wigner d-function defined by

dμmn (β) = (−1)μ−m
√

(2n+ 1)/2

×
√
(n+m)!(n−m)!(n+ μ)!(n− μ)!

×
min(n+m,n−μ)∑
σ=max(0,m−μ)

ξσ,

ξσ =
(−1)σ

(
cos β

2

)2n−2σ+m−μ (
sin β

2

)2σ−m+μ

σ!(n+m− σ)!(n− μ− σ)!(μ−m+ σ)!
.(7)

The normalization factors (4π2)−1/2 and
√
(2n+ 1)/2 are

chosen for later convenience.
The arguments of the Wigner D-function, (α, β, γ) ∈

[0, 2π)× [0, π]× [0, 2π), are the Euler angles representing a
measurement position on SO(3). The Wigner D-functions with
n ≤ nmax form an orthonormal basis for band-limited functions
in L2(SO(3)) and satisfy the orthonormality relation

〈Dμm
n , Dμ′m′

n′ 〉SO(3) = δnn′δmm′δμμ′ , (8)

where δnn′ is the Kronecker delta function. Here, 〈f, g〉SO(3) is
the L2 inner product of two functions f and g on SO(3),

〈f, g〉SO(3) =

∫
SO(3)

f(α, β, γ)g(α, β, γ)dSO(3), (9)

with dSO(3) = sinβdαdγdβ. The inner product on a subset R
of SO(3) and its compliment Rc are defined as

〈f, g〉R =

∫
R

f(α, β, γ)g(α, β, γ)dSO(3) (10)

and

〈f, g〉Rc =

∫
Rc

f(α, β, γ)g(α, β, γ)dSO(3), (11)

respectively, and will be needed later in the paper. Each of
these inner products have an associated norm, ‖f‖2SO(3) =

〈f, f〉SO(3), ‖f‖2R = 〈f, f〉R, and ‖f‖2Rc = 〈f, f〉Rc .
It is important for future calculations to note that the band-

limited Wigner D-functions are uniformly bounded [19],

sup
0≤n≤nmax

μ,m∈−n,...,n

∥∥∥√sinβDμm
n (α, β, γ)

∥∥∥
∞

≤ C(2nmax + 1)1/4

≤ C ′N1/12
D , (12)

for some constantsC > 0 andC ′ > 0. In (12)ND as the number
of band-limited Wigner D-functions with band-limit nmax and
is given by

ND = (nmax + 1)(2nmax + 1)(2nmax + 3)/3. (13)

Casting (5) as [19] does for the CS problem we obtain

w = Φa+ η, (14)

where a known set of M measurements {wj} at positions
{(αj , βj , γj)} is denoted by the vector w with entries wj and
the elements of the measurement matrix Φ ∈ C

M×ND are

[Φ]jk = D
μ(k)m(k)
n(k) (αj , βj , γj) (15)

with j ∈ {1, 2, . . . ,M} and k ∈ {1, 2, . . . , ND}. In (14), a ∈
C

ND is the vector of correspondingly ordered coefficients amμ
n

and η is the vector of additive measurement noise. The results
in [19] show that if the samples are selected uniformly at random
according to,αj ∼ U(0, 2π), βj ∼ U(0, π), γj ∼ U(0, 2π), and
the number of measurements, M , satisfies

M ≥ C̃N
1/6
D s ln3(s) ln(ND) (16)

for some constant C̃ > 0, then, after a preconditioning step,
standard CS guarantees for BOSs apply. Here, s is the sparsity
of the coefficient vector, a.

For the inverse problem in (14), the theoretical guarantee
in [19] requires measurements to be taken at arbitrary positions
on all of SO(3). However, many measurement configurations
leave parts of SO(3) inaccessible. As an example, certain mea-
surement systems have the antenna placed on a support structure
with its main lobe pointing up. In such a setup, any values of α
andγ are available to measure, but certain values or intervals ofβ
are not. Our work in Section IV-B shows that such restrictions on
measurement positions do not invalidate the use of QCBP and its
associated CS guarantees. However, restrictions do invalidate the
bound on the number of measurements needed for reconstruction
in [19]. This invalidation is because restricting measurement
positions prohibits uniform sampling of the measure associated
with the preconditioned WignerD-function BOS. As a note, [19]
and other similar papers, e.g. [28], also perform CS by testing
with specific sampling grids or by minimizing the coherence
of the measurement matrix. Such methods can be used with a
restriction to measurements fromR, but we emphasize that these
methods still would not provide the theoretical guarantees we
seek.

Generally, we can think of the restriction above as limiting
β to a range from Θ1 to Θ2. This is sometimes known as a
latitudinal belt when considering a sphere instead of SO(3), but
we will use the same name. The latitudinal belt is the particular
form of restricted measurements we consider in this paper. We
show that restriction to a latitudinal belt requires a change of the
basis from the Wigner-D functions to a related set of Slepian
functions on SO(3). This change of basis does increase the
coefficient sparsity level slightly, but it does so in a bounded way
by only transforming within special fixed subspaces of Wigner
D-functions. Although the transformation allows us to show
that CS guarantees hold, the required number of measurements
increases by a factor proportional to the square of the dimension
of the largest fixed subspace.
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B. Slepian Functions on the Rotation Group

1) Concentration on a General Sub-Domain: The spectral
concentration problem gives rise to Slepian functions on a
domain [21], [22], [23], [24]. These special functions are an
orthogonal basis for band-limited L2 functions on their entire
domain and on the subset of the domain to which they are
space-limited. This property is of particular interest in our setting
because measurements of the field are not on all of SO(3) but
instead on a subset of SO(3).

Though frequently constructed on the domain R, recent work
has shown that Slepian functions can be constructed on more
complex domains like the sphere [24]. This work showed that
using a basis forL2 functions on the entire domain, one can con-
struct Slepian functions concentrated on a chosen sub-domain.
Using this approach, we develop Slepian functions concentrated
on a latitudinal belt on SO(3) using only Wigner D-functions.
Mathematically, we formulate a matrix problem that maximally
concentrates linear combinations of band-limited Wigner D-
functions on R ⊆ SO(3). We call the resulting functions the
Rotation Group Slepian Functions (RGSFs) and denote them by
g1, g2, . . . , gN ∈ L2(SO(3)). Importantly, the RGSFs can be
shown to satisfy a uniform bound that is useful for CS recovery.

The requirements of band-limitedness and L2 integrability
imply that each of the RGSFs has an expansion of the form

gi(α, β, γ) =

nmax∑
n,m,μ

g̃μmin Dμm
n (α, β, γ), (17)

where the coefficients g̃μmin are unknown. To find these coeffi-
cients (subject to orthogonality with all gj , j < i), the following
optimization problem is solved iteratively over the index i:

maximize
g̃µm
in ∈C

λi

subject to

{
λi =

‖gi‖2R
‖gi‖2SO(3)

,

0 = 〈gi, gj〉SO(3), ∀j < i ≤ ND.
(18)

This optimization problem can be viewed as maximizing the
concentration of gi on R relative to all of SO(3) while ensuring
the entire set of gi are mutually orthogonal on SO(3). Substi-
tuting (17) into (18) and using (8) we find

λi =

∑nmax

n,′μ,′m′ g̃
μ′m′
in′

∑nmax

n,μ,m

〈
Dμm

n , Dμ′m′
n′

〉
Rg̃

μm
in∑nmax

n,μ,m g̃μmin g̃μmin
. (19)

We recognize (19) as the equivalent matrix equation

λi =
g∗
iDgi

g∗
igi

(20)

where the elements of the matrix D ∈ C
ND×ND are inner prod-

ucts between Wigner D-functions on the domain R,

[D]jk =
〈
D

μ(k)m(k)
n(k) , D

μ′(j)m′(j)
n′(j)

〉
R
, (21)

and the vector gi has the coefficients g̃μmin correspondingly
arranged according to the ordering functions n(j), μ(j), m(j).
Furthermore, iteratively solving (18) is equivalent to iteratively

solving the constrained maximum eigenvalue problem

maximize
gi∈CND

λi subject to

{
λigi = Dgi,

0 = g∗
jgi, ∀j < i ≤ ND.

(22)

From (21) and (18) D is Hermitian and positive definite,
respectively. This implies D has a spectral decomposition with
orthonormal eigenvectors and, by construction, the associated
eigenvalues satisfy 1 > λ1 ≥ λ2 ≥ · · ·λND

> 0. It follows that
the solution (18), and thus the set of RGSFs, is given by the
eigenvalues and associated eigenvectors of D. Importantly, the
RGSFs are orthogonal over both SO(3) and R (see Section
VII-A for the derivation), i.e.,

〈gi, gi′ 〉SO(3) = δii′ (23)

and

〈gi, gi′ 〉R = λiδii′ . (24)

The above derivation is general and works for any region R.
Before specializing the choice ofR to a latitudinal belt, we make
several remarks.

Remark 1: As shown in (18), the eigenvalue associated with
each RGSF measures the degree to which it is localized to R.
So we expect the RGSFs with eigenvalues close to unity to be
well localized on R and the RGSFs with eigenvalues near zero
to be more localized on Rc.

Remark 2: The total number of RGSFs is always ND and
does not depend on R. However, the number of RGSFs highly
concentrated on R (i.e., λi near unity) does depend on the
selection of R.

Remark 3: Similar to how we can expand the RGSFs in
Wigner D-functions, we can expand the Wigner D-functions
in the RGSFs. This is because both sets of functions form a
basis for band-limited functions in L2(SO(3)).

2) Concentration on a Latitudinal Belt: We are interested in
the case when measurements are limited to a latitudinal belt,
so we set the restricted region to be R = [0, 2π)× [Θ1,Θ2]×
[0, 2π)with 0 ≤ Θ1 < Θ2 ≤ π. Under this restriction, using (6),
and since the dμmn are real, the elements of the matrix D reduce
to

[D]jk = δm(k)m(j)δμ(k)μ(j)

×
∫ Θ2

Θ1

d
μ(k)m(k)
n(k) (β)d

μ(j)m(j)
n(j) (β) sinβdβ. (25)

Thus, there exists an indexing such that D has a block diagonal
structure,

D = diag
(
D00,D01,D0−1,D10, . . . ,D−nmax−nmax

)
(26)

with

[Dμm]jk =

∫ Θ2

Θ1

dμmn(k)(β)d
μm
n(j)(β) sinβdβ. (27)

The matrix D will have a total of (2nmax + 1)2 blocks and
each block has a dimension of nmax − nmin + 1, where nmin =
max(|m|, |μ|).

From (25), the block diagonal structure arises due to the
presence of the full α and γ ranges. This makes [D]jk zero
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unless the matrix pairs functions that belong to the same fixed
μ, m subspace Smμ. Specifically, Smμ can be defined as,

Smμ = span {Dμm
n (α, β, γ) : n ∈ {nmin, . . . , nmax}} , (28)

where m, μ ∈ {−nmax,−nmax + 1, . . . , nmax}.
Importantly, each of the sub-matrices Dμm are symmetric

and can be solved individually for their eigenvectors. For con-
venience and to maintain awareness of the subspace Smμ, we
change notation and label the eigenvectors with their associated
m, μ values and order them according to decreasing eigenvalues
within Smμ. That is, the eigenvectors and eigenvalues are gμm

i

and λμm
i , respectively, where i ∈ {1, . . . , nmax − nmin + 1},

μ, m ∈ {−nmax,−nmax + 1, . . . , nmax}, and λμm
1 ≥ λμm

2 ≥
· · · ≥ λμm

nmax−nmin+1. To relate the two labeling schemes, if we
take all gμm

i and order them according to decreasing eigenval-
ues, we get the original labeling gi with i ranging from 1 to
ND.

The eigenvectors of each Dμm give the expansion coefficients
for the RGSFs in Smμ. Similar to the eigenvectors, we will
re-index the RGSFs by m and μ and their order in concentration
within Smμ. Since the eigenvectors gμm

i only involve the fixed
Smμ subspace we can rewrite (17) as

gμmi (α, β, γ) =

nmax∑
n=nmin

g̃μmin Dμm
n (α, β, γ) (29)

with the inverse relation given by (see supplementary material
Section VII-B for derivation)

Dμm
n (α, β, γ) =

nmax−nmin+1∑
i=1

g̃μmin gμmi (α, β, γ), (30)

where i ∈ {1, . . . , nmax − nmin + 1} and m, μ ∈
{−nmax,−nmax + 1, . . . , nmax}. Importantly, due to the
maximum dimension of any Smμ, the RGSFs satisfy the
following uniform bound.

Proposition 1: Let R be the latitudinal belt defined by Θ1

and Θ2, gμmi (α, β, γ) be the RGSF on R associated with the
ith eigenvalue of the matrix Dμm corresponding to the subspace
indicated bym and μ, S be the subset of band-limited RGSFs on
R with eigenvalues greater than or equal to λmin, and ND be the
total number of band-limited RGSFs on R. Then the following
holds:

sup
gµm
i ∈S

∥∥∥∥∥
√

sinβ

λμm
i

gμmi (α, β, γ)

∥∥∥∥∥
∞

≤ C ′′N1/4
D√

λmin
(31)

where C ′′ = ( 32 )
1/6C ′ and C ′ > 0 is from (12).

Proof: See supplementary material Section VIII-A.
The construction of RGSFs on the latitudinal belt enables CS

recovery to remain viable on R. The particular selection of R
is such that the Dμm result in isolated rotations of Wigner D-
functions within each subspaceSmμ. Moreover, these subspaces
have a maximum dimension nmax + 1. Therefore, even without
explicitly knowing the eigenvectors, their transformation does
not grow the bound on the RGSFs too large, and thus the
construction is useful for CS recovery. This is formalized in
Proposition 1.

III. COMPRESSIVE SENSING GUARANTEES FOR STRUCTURED

MATRICES

Compressive sensing approaches to the inverse problems
presented in this paper rely on two key assumptions. First is that
the unknown vector of coefficients is sparse (having many zero
entries) or be compressible. Roughly speaking, compressible
means that a vector is well approximated by a sparse vector.
Work in [3], [16] has established that this is indeed the case
in the Wigner D-function basis for many antennas of interest.
The second assumption concerns the choice of the measurement
matrix Φ, which must allow for efficient recovery of a sparse
or compressible vector via QCBP. To guarantee the recovery
performance of QCBP, we argue that the types of Φ we consider
satisfy the RIP with high probability. The relevant background
on the RIP and performance guarantees are given in the remain-
der of this section.

Definition 2 (Best s-Sparse Approximation Error [15, p. 42,
def. 2.2]): Given a vector x ∈ C

N , the best s-sparse approxi-
mation error in the �p norm is

σs(x)p = inf
z∈CN :‖z‖0≤s

‖z − x‖p. (32)

Definition 3 (Restricted Isometry Property (RIP) [15, p. 133,
def. 6.1]): A matrixΦ ∈ C

M×N satisfies the restricted isometry
property of order swith constant δ ∈ (0, 1) if the following holds
for all s-sparse vectors in x ∈ C

N

(1− δ)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δ)‖x‖22, (33)

where the smallest δ, denoted by δs, is called the restricted
isometry constant.

Theorem 4 (RIP for Bounded Orthonormal Systems
(BOS) [15, p. 405, Thm. 12.31]): Consider a set of bounded or-
thonormal basis functions φi : D → C, i ∈ {1, 2, . . . , N} that
are orthonormal with respect to a probability measure ρ on
the measurable space D. Consider the matrix Φ ∈ C

M×N with
entries

φji = φi(tj), j ∈ {1, 2, . . . ,M}, i ∈ {1, 2, . . . , N} (34)

constructed with i.i.d. samples of tj from the measure ρ on D.
Suppose the orthonormal functions are bounded such that 1 ≤
supi∈{1,...,N} ‖φi‖∞ ≤ K. If

M ≥ C0δ
−2K2 s ln4(N) (35)

then with a probability of at least 1−N− ln3(N), the restricted
isometry constant δs of 1√

M
Φ satisfies δs ≤ δ for δ ∈ (0, 1). The

constant C0 > 0 is universal.
Theorem 5 (Sparse Recovery for RIP Matrices [15, p. 144,

Th. 6.12]): Suppose that the matrix Φ ∈ C
M×N has restricted

isometry constant δ2s < 4/
√
41 ≈ 0.6246. Suppose that the

measurements are taken withΦ and are noisy, y = Φx+ η, with
‖η‖∞ ≤ ε. If x̂ is a solution to

x̂ = arg min
z∈CN

‖z‖1 subject to ‖y − Φz‖2 ≤
√
Mε, (36)

then

‖x− x̂‖2 ≤ C1

(
σs(x)1√

s
+ ε

)
, (37)

where the constant C1 > 0 only depends on δ2s.
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Theorem 5 states that a compressible vector x can be recov-
ered using QCBP with an accuracy proportional to the sparse
approximation error plus a noise factor so long as the measure-
ment matrix Φ satisfies RIP with small enough RIP constant.
Pairing Theorem 4 and Theorem 5 shows that BOS measurement
matrices can be used for accurate CS recovery provided that
enough samples are taken.

IV. COMPRESSIVE SENSING ON THE RESTRICTED DOMAIN R

The approach we take to achieve our main result in Theorem 6
is broken into three parts. In Section IV-A, we transform the
measurement matrix Φ and the coefficient vector a in (14) from
the Wigner D-function to the RGSF basis. We then state our
main result in Section IV-B along with our interpretation of this
result. In Section IV-C we detail the effect of the transformation
presented in Section IV-A on the sparsity of the coefficient vector
a. In particular, we argue that for certain cases, the sparsity level
could increase, but not so much that the coefficient vector in the
RGSF basis is no longer sparse, and this can be determined from
the sparsity pattern of the Wigner D-function coefficients only.

A. Transformation of the Inverse Problem in (14)

Using (15) and (30), we can write the term Φa appearing
in (14) as

Φa = ΦU ∗√Λ
−1√

ΛUa = Φ′√ΛUa, (38)

where
√
Λ ∈ C

M×ND is the principal square root of the diagonal
matrix of strictly positive RGSF concentrations, i.e.,

[Λ]jk = λ
μ(j)m(j)
i(j) δjk. (39)

In (38), U ∈ C
M×ND is the unitary matrix that transforms from

the WignerD-function basis into the RGSF basis (see (29)) with
elements

[U ]jk = g̃
μ(j)m(j)
i(j)n(k) (40)

and Φ′ = ΦU ∗√Λ
−1 ∈ C

M×ND has elements

[Φ′]jk =
(
λ
μ(k)m(k)
i(k)

)−1/2

g
μ(k)m(k)
i(k) (αj , βj , γj). (41)

Next, we absorb
√
ΛU into the unknown vector of coeffi-

cients, giving

Φa = Φ′√ΛUa = Φ′√Λã = Φ′a′, (42)

where ã = Ua is the vector of coefficients in the RGSF basis
normalized over all of SO(3) and a′ =

√
Λã is the vector of

coefficients on the RGSFs normalized on R. We now write our
inverse problem as

w = Φ′a′ + η. (43)

From the form of U that derives from (29) and (30), if the signal
a is sparse or compressible due to a small subset of allSmμ being
sufficient in the Wigner D-function basis, then it will remain so
in the RGSF basis. This is detailed in Section IV-C.

The inverse problem in (43) is a manipulated version of (14)
and no assumptions about the set of measurement positions have

been made. However, it is more amenable to choosing measure-
ment positions that are restricted to R. A drawback, however, is
that some λμm

i are very small and so the R-normalized RGSFs’
uniform bound will be very large.

To avoid the problem caused by RGSFs with small λμm
i , we

take the columns of Φ′ with the RGSFs having eigenvalues less
than some cutoff λc, say, Nλ<λc

functions, and place them in
a matrix Φ′

2. We also take the remainder of the columns to be
in a matrix Φ′

1 and partition a′ accordingly into a′1 and a′2. This
allows us to write (43) as

w = Φ′
1a

′
1 +Φ′

2a
′
2 + η. (44)

Without detailing the effect here (see Section IV-B), it is bene-
ficial to group the last two terms above into the new noise term
η′ to obtain

w = Φ′
1a

′
1 + η′. (45)

With an eye towards (31), we precondition (45) with the diagonal
matrix Pii =

√
sinβi. Then, PΦ′

1 is a matrix constructed from
a sampled BOS over the latitudinal belt R. In particular, PΦ′

1

arises by sampling the BOS containing only preconditioned
RGSFs with concentrations no less than λc. Explicitly, the BOS
is the set S with λmin = λc,

S′ :=

{√
sinβ

λμm
i

gμmi (α, β, γ) : gμmi ∈ S with λmin = λc

}
(46)

paired with the measure dρ = dαdβdγ over the domain R. In
this preconditioned formulation we can readily apply the CS
results from Section III to solve for a′1.

To summarize, we took (14) with a measurement matrix con-
structed from the BOS of band-limited Wigner D-functions and
transformed it into (45) with a measurement matrix constructed
from the BOS of band-limited RGSFs with eigenvalues no less
than λc. In (14), we solve for the coefficient vector a, requiring
measurements on all of SO(3) for CS to apply. In (45), we solve
for the coefficient vector a′1, requiring measurements only on R.
Here a′1 contains the coefficients of the function w(α, β, γ) on
the RGSFs with concentrations λc or greater. Therefore, solving
(45) will not give all of the RGSF coefficients for w(α, β, γ)
and therefore cannot be expected to give trustworthy field val-
ues on Rc where the unknown coefficients in a′2 contribute to
w(α, β, γ). However, Section IV-B will show that having only
a′1 does not prohibit the accurate recovery of w(α, β, γ) if w
falls into a certain class of functions.

B. Compressive Sensing on R

We now state our main result for applying CS on the latitudinal
belt R by solving (45). This is given in Theorem 6 below. Note,
the last part of this result, (51), characterizes the size of the
truncated RGSF coefficients a′2 in terms of the energy of w on
Rc. In the next subsection, we provide a set of lemmas that are
helpful in establishing the sparsity of a′ and thus a′1 appearing
in (45).

First, we recap the definitions needed for our main result:
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1) a ∈ C
ND is the vector containing the Wigner D-function

coefficients for the band-limited function w(α, β, γ) =∑nmax

n,m,μ a
mμ
n Dμm

n (α, β, γ) and ND is the number of
band-limited Wigner D-functions with band-limit nmax.

2) R is the latitudinal belt on SO(3) specified by Θ1 and Θ2

where 0 ≤ Θ1 < Θ2 ≤ π.

3) The set
{(

λ
µ(k)m(k)

i(k)

)−1/2
g
µ(k)m(k)

i(k)

}ND

k=1

is the band-limited

R-normalized RGSF basis for SO(3) concentrated on R.
4) a′ ∈ C

ND is the vector of RGSF coefficients for
w(α, β, γ) in the R-normalized RGSF basis. The prod-
uct matrix

√
ΛU transforms the band-limited Wigner D-

function coefficientsa into the band-limitedR-normalized
RGSF coefficients a′.

5) a′1 is the vector of coefficients for w(α, β, γ) associ-
ated with the RGSFs that have λμm

i ≥ λc, with λc ∈
(minλμm

i ,maxλμm
i ), and a′2 is the vector of the remain-

ing RGSF coefficients for w(α, β, γ).
6) Nλ<λc

is the number of band-limited RGSFs with con-
centrations less than λc,

7) Φ′
i, i ∈ {1, 2} is the sensing matrix whose elements are

the RGSFs corresponding to a′i. These have elements

[Φ′
i]jk =

g
μ(k)m(k)
i(k) (αj , βj , γj)√

λ
μ(k)m(k)
i(k)

for RGSFs satisfying λ
μ(k)m(k)
i(k) ≥ λc if i = 1 and

λ
μ(k)m(k)
i(k) < λc if i = 2.

8) η′ = Φ′
2a

′
2 + η where η is the vector of additive measure-

ment noise.
9) P is the diagonal matrix whose elements are Pjj =√

sinβj .
Theorem 6 (Sparse Recovery for Wigner D-Function Series

on Restricted SO(3)): Consider the linear inverse problem,

Pw = PΦ′
1a

′
1 + Pη,′ (47)

that is constructed from M i.i.d. noise corrupted sam-
ples (αj , βj , γj) of w(α, β, γ) where αj ∼ U(0, 2π), βj ∼
U(Θ1,Θ2), γj ∼ U(0, 2π), Suppose ‖Pη′‖∞ ≤ ε and s is an
integer satisfying

M ≥ C2

√
ND

λc
s ln4(ND). (48)

Let the estimated RGSF coefficients â′ be constructed by solv-
ing (47) using QCBP for â′1 and setting â′2 to be all ze-
ros. Let the estimated Wigner D-function coefficients be â =

U ∗√Λ
−1
â′ so that we have the estimated function ŵ(α, β, γ) =∑nmax

n,m,μ â
mμ
n Dμm

n (α, β, γ) on SO(3). Then with probability

1− (ND −Nλ<λc
)− ln3(ND−Nλ<λc ), the following hold.

1) The estimated function ŵ(α, β, γ) satisfies

‖w(α, β, γ)− ŵ(α, β, γ)‖2R

< C2
1

(
σs(a

′
1)1√
s

+ ε

)2

+
λc

1− λc
ERc , (49)

where ERc = ‖w(α, β, γ)‖2Rc is the energy of w(α, β, γ)
on Rc.

2) The estimated Wigner D-function coefficients â satisfy

‖a− â‖2 ≤ C2
1

(
σs(a

′
1)1√
s

+ ε

)2

+
1

1− λc
ERc

+ ÊRc + 2

√
ERcÊRc , (50)

where ÊRc is the energy of ŵ(α, β, γ) on Rc.
3) The noise term ‖Pη′‖∞ ≤ ε in the errors is bounded,

‖Pη′‖∞ ≤ ‖Pη‖∞ + ‖PΦ′
2a

′
2‖∞ and ‖PΦ′

2a
′
2‖∞ satis-

fies

‖PΦ′
2a

′
2‖∞ ≤ C ′′N3/4

D ERc

(1− λc)
. (51)

Proof: See supplementary material Section VIII-D.
Remark 4: Relationships between the various constants in the

above equations are as follows. We have C2 = C ′′C0δ
−2
2 s , where

C0 is from Theorem 4 (see associated reference for numerical
value) and C ′′ = ( 32 )

1/6C ′ with C ′ found in (12) (see associated
reference for numerical value). Remaining is C1, which is from
Theorem 5 (see associated reference for numerical value).

Remark 5: In the above, the s can be thought of as the sparsity
of the vector a′1, which is bounded by the sparsity of a′. Thus,
Theorem 6 tells us that if the sparsity of a′ (a′1) scales slower than
the square root of ND, the required number of measurements
to recover w(α, β, γ) on R only becomes sub-linear in ND

(ignoring log factors) and the errors inw(α, β, γ) and the Wigner
D-function coefficients are given by (49) and (50), respectively.

Remark 6: From (49) as λc decreases, the error in ŵ(α, β, γ)
on R becomes bounded only by the sparse representation error
and ε, which includes noise and the ignored RGSFs. Also note
that if the function w can be represented by only the RGSFs that
are kept inΦ′

1, then the bound on function reconstruction error in
(49) depends only on the sparse representation and noise errors
(see the proof of (49)).

Remark 7: It is worth commenting on the presence of ÊRc in
(50). This term comes about because no samples of the function
w(α, β, γ) onRc are used. In particular, we can write the l2 error
for the Wigner D-function coefficients in terms of (49) plus the
contributions from w(α, β, γ) and ŵ(α, β, γ) in Rc. It is not
unreasonable to expect that ÊRc will be small whenERc is small,
however. This is because a small ERc implies small elements of
a′1 associated with RGSFs having larger concentrations in Rc

and with a sufficient number of measurements â′ will be close
to a′1 in the sense of the l2 distance (see proof of Theorem 6).

Remark 8: The above result gives a theoretical foundation
for CS using measurements on R and its ideas can be used
together with approaches tailored to give deterministic sampling
patterns [16], [19]. For example, the RGSF basis can be used and
fixed measurement positions onR can be iteratively added to the
measurement matrix as to minimize its coherence.

Remark 9: As stated, Theorem 6 dictates the use of random
polarization angle measurements when used for EM antennas.
However, it is common to only use to polarization angle mea-
surements separated by π/2 [2] when a μ = ±1 probe is used.
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If one desires only those two measurement positions, Theorem 6
can be altered to work in this case. However, the BOS becomes
mixed continuous (azimuth and polar angle) and discrete (po-
larization angle). This mixed BOS makes the discussion rather
technical but does not change the fundamental nature of the
result.

C. Sparsity in Wigner D-Functions and RGSFs

The sparsity of s of the RGSF coefficients a′ plays an
important role in Theorem 6. As discussed earlier, we know
that the Wigner D-function coefficients a are typically sparse,
using only a fraction of the Smμ subspaces. The transformation
a =

√
ΛUa′ used in (43) will clearly affect the level of sparsity

of a′ relative to a. Roughly speaking, the change in sparsity is
because the transformation can map one coefficient of a in an
Smμ subspace to many in the same subspace in a′. This effect
on sparsity in the RGSF basis is straightforwardly addressed in
two cases that we present in the lemmas below. The first lemma
relates the RGSF sparsity to an upper bound on both |m| and |μ|
for which the Wigner D-function coefficients, a, are nonzero.
The second lemma relates the RGSF sparsity to the sparsity in
the Wigner D-function basis without restrictions on m or μ.
Importantly, these lemmas show the RGSF coefficients, a′, will
be sparse when a is sparse. Furthermore, the lemmas quantify
how the sparsity level of a′ is related to the sparsity level of a.

Lemma 7 (Sparsity of a′ with Boundedm and μ): Let a be the
coefficient vector for w(α, β, γ) in the band-limited Wigner D-
function basis with band-limit nmax. If the Wigner D-function
coefficients amμ

n in a are nonzero only for |m|, |μ| ≤ mmax,
then the coefficient vector a′ =

√
ΛUa in the RGSF basis is

s-sparse with s satisfying

s ≤ Nmmax
, (52)

where

Nmmax
= (mmax + 1)(2mmax + 1)(2mmax + 3)/3

+ (nmax −mmax)(2mmax + 1)2. (53)

Proof: The proof is given in Section VIII-B.
Lemma 8 (Sparsity of a′ Given a is k-sparse): Let a be the

coefficient vector for w(α, β, γ) in the band-limited Wigner D-
function basis with band-limit nmax. If a is k-sparse with k ∈
{1, 2, . . . , (2nmax + 1)2 − 1}, then the coefficient vector a′ =√
ΛUa in the RGSF basis is s-sparse with s satisfying

s ≤ Nmmax
+
(
k − (2mmax + 1)2

)
(nmax −mmax) , (54)

with

mmax =

⎧⎨⎩
�√k�−1

2 , �√k� is odd

�√k�−2
2 , �√k� is even,

(55)

where Nmmax
is given by (53) and �·� is the floor function.

Proof: The proof is given in Section VIII-C.
Remark 10: In the lemmas above, the upper bounds on the

RGSF sparsities grow with m3
max and nmaxm

2
max as the highest

order terms. This scaling is due to the dimension of the Wigner

D-function basis (and RGSF basis) scaling with the m, μ band-
limit and nmax as m2

maxnmax. Since the transforming to the
RGSF basis mixes coefficients withinm, μ subspaces, the worst
case sparsity is one non-zero Wigner D-function coefficient per
m, μ subspace turning into full RGSF subspaces. In contrast,
the best case is when all Wigner D-function coefficients are
in a single m, μ subspace. This gives, at most, one full m, μ
subspace for the RGSF coefficients.

V. NUMERICAL RESULTS

We present numerical examples of the compressive sensing
theory developed above. We begin with examples of the RGSFs
and how transforming from the Wigner D-function basis to the
RGSF basis affects sparsity. Next, we study how CS using the
BOS of RGSFs is affected by the parameters of Theorem 6 via
its CS recovery phase diagram. Then, using an example field, we
present how CS reconstruction according to Theorem 6 performs
compared to other CS and non-CS methods in two cases. The
first case is with the domain R chosen to be nearly all of SO(3)
and the second is when the measurements are restricted to half
of SO(3). For these comparisons, we look at both the near-
field and far-field reconstructions acquired from different CS
and classical methods. Note that the far-field reconstruction is
acquired by solving the coefficient vector a or a′ for the spherical
wave coefficients, which are used to calculate the field at a large
distance. Next, we analyze the performance of these methods in
regard to spherical wave coefficients when R is restricted to half
of SO(3). Finally, we cover how the tuning of λc or the addition
of measurement noise affects CS reconstruction in the truncated
RGSF basis.

For the sake of simplicity, the function on SO(3) that we
reconstruct in this section is chosen to be an axisymmetric
acoustic scalar field F (r, θ, φ) (field coefficients are given in the
supplementary material Section IX), for which we simulate mea-
surements by an ideal axisymmetric probe. Here, (r, θ, φ) are
positions in spherical coordinates centered on the device. This
means w(α, β, γ) is the rotated and translated form F (r, θ, φ)
as measured by the ideal probe. The near field measurement
position for this field with wavelength λrad is found to be
r = 7λrad and the far-field is taken at r = 2000λrad. This setup
is analogous to the full EM antenna case. The main differences
between the acoustic and EM cases are twofold. First, the
measurements w(αj , βj , γj) in acoustics are independent of
the polarization angle. This is not so for the EM case. Second,
monopole terms do not exist in the EM case, so the coefficients
and explicit sensitivities of an ideal probe are different. These
two differences amount to increases in the number of non-zero
RGSF coefficients, but the form of the inverse problem remains
otherwise unchanged. As we will see, the figures below show
that when measurements are only available on R, CS with the
truncated RGSF basis performs the best.

As a basis of comparison for our method (CS using the
truncated RGSF series), we include recovery results from the
following methods. Note, none of the following CS methods
have theoretical guarantees of the form of Theorem 6 when using
measurements only on R.
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1) WD CS – CS in the Wigner D-function BOS using mea-
surements on all of SO(3) [19]

2) Padded FFT – Zero-padded FFT according to [5]
3) Dropped WD CS – CS in the Wigner D-function BOS

using only measurements on R
4) Padded WD CS – CS in the Wigner D-function BOS

using measurements on R with zeros inserted for any
measurement in Rc

The WD CS method is simply for comparison to CS when full
SO(3) measurements are available. The other three methods are
alternative approaches to CS when full SO(3)measurements are
not available. The Padded FFT method is a particularly important
baseline for comparison; it can be considered as the classical
method to maintain accuracy when measuring only a subset
of SO(3) [2]. The accuracy one should expect when using the
Padded FFT method is well-known from the full EM case [2]. In
short, if measurements are only available forR, then the far-field
reconstruction of an antenna’s field is only reliable on a subset of
R based on the geometry of the antenna and the radius at which
measurements are taken, see [2, pp. 232–234].

A. Parameter Selections

In all following examples, we select nmax = 20 and Θ1 = 0
unless otherwise specified. To compute the integrals in (25) we
use Gauss–Legendre quadrature. For a given nmax, this method
is numerically exact, since the product of Wigner d-functions is
a polynomial in cosβ. Thus, it follows that a product of Wigner
d-functions becomes a polynomial on the interval [−1, 1]. To
calculate the Wigner d-functions we use the recursive algorithm
developed in [29]. Additionally, eigendecompositions are com-
puted using MATLAB2 function eig(). For the CS methods
we use BP (for WD CS, Drop WD CS, Pad. WD CS) and QCBP
(for RGSF CS) from the SPGL1 library2 [30], [31] with 300
non-zero simulated measurements. For the QCBP, we use the
quadratic constraint ‖Pw − PΦ′

1a
′
1‖ ≤ 0.05‖Pη′‖, where η′ is

known from the actual coefficients a′2 and the given noise level
η (which can be zero). Lastly, for the Padded FFT method, we
use 861 simulated measurements (the minimum according to the
Nyquist sampling theorem), 451 of which are nonzero, with the
remainder being padded zeros.

We note that the run time for problem setup and a single CS
reconstruction using RGSFs with nmax = 20 is on the order
of 30 seconds or less when done on a laptop utilizing 16 GB of
RAM and one 2.3 GHz core (Intel i7)2. This run time includes the
computation of the RGSF expansion coefficients in the Wigner
D-function basis (from pre-computed integrals over R), which
can be reduced by pre-computing the expansion coefficients.

B. RGSF Examples

We give examples of the sorted RGSF spectrum and the β
distribution of a few RGSFs in Figs. 1 and 2, respectively,
with Θ2 = π/2 and band-limit nmax = 20. Note that we have
dropped the subspace indices and ordered the RGSFs according

2Mention of this product is not an endorsement but only serves to clarify what
was done in this work.

Fig. 1. Energy Concentration of the RGSFs. Distribution of all RGSF eigen-
values with band-limit nmax = 20.

Fig. 2. RGSF Examples. The β dependence of RGSF magnitudes in S00:
(a) g001 , (b) g007 , (c) g0011, and (d) g0021.

to their concentration in R. The spectrum shows the critical
behavior that is expected for Slepian functions, where a portion
of the eigenvalues are near unity and there is a rapid transition to
near zero. In Fig. 2 we plot the magnitude of a selection of RGSFs
in S00 as a function of β. We select the first, seventh, eleventh,
and last RGSFs in this subspace in order to demonstrate different
levels of concentration in R. The first and seventh RGSFs in the
subspace are almost entirely supported on R, the eleventh is
supported on all of SO(3), and the last one is almost entirely
supported on Rc.

C. Changes in Sparsity When Using RGSFs

As discussed above in section IV-C, transforming from the
Wigner D-function basis to the RGSF basis increases the spar-
sity level of the spherical near-field measurement inverse prob-
lem in a bounded way. In Fig. 3 we depict this change as specified
by Lemma 7 in the bottom pane and Lemma 8 in the top pane
(dashed curve). Note, for this experiment we set nmax = 10.
Lemma 8 is the worst case change in sparsity level, so we
also depict the change in sparsity when the Wigner D-function
coefficients, a, are randomly selected on all WignerD-functions
(top pane solid curve) or only on Wigner D-functions with
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Fig. 3. Change In Sparsity from Wigner D-functions to RGSFs. Top pane:
RGSF sparsity s resulting from Lemma 8, random k-sparse Wigner D-function
coefficients, and random k-sparse Wigner D-function coefficients only in |μ| ≤
1 subspaces. Bottom Panel: RGSF sparsity given WignerD-function coefficients
satisfying Lemma 7.

|μ| ≤ 1 (dotted curve). In both cases, the values of the partic-
ular coefficients are i.i.d. random variables of the form x+ iy
with both x, y ∼ N (0, 1) where N (0, 1) the standard normal
distribution and the output RGSF sparsity is averaged over
100 trials for each Wigner D-function sparsity. Note, the most
physically relevant case is when a is nonzero only for |μ| ≤ 1, as
measurements are usually conducted with probes only sensitive
to low-order SWs. As can be seen in Fig. 3, both random
coefficient selections have considerably lower sparsity levels
than Lemma 8 guarantees, with |μ| ≤ 1 being well bounded.
Moreover, the results in the bottom pane show that a secondary
band limit like mmax assumed in Lemma 7 results in the RGSF
sparsity being well controlled unless mmax ≈ nmax.

D. RGSF CS Phase Diagram

Theorem 6 gives a requirement on the number of measure-
ments needed for CS using RGSFs to be successful. However,
as is common with similar RIP-based guarantees for BOS,
there are various factors affecting the number of measurements
needed. To investigate how these affect recovery in practice,
Fig. 4 shows the phase transition diagram generated by using
BP to solve the inverse problem in (47) with η′ = 0 (since this
encapsulates noise and modeling errors). In Fig. 4, (a) gives
the general phase diagram with λc = 0.5 and (b) gives the
distribution of the success rate, #successes

#trials , for fixed normalized
sampling, M/(ND −Nλ<λc

), but varying λc. Here the solution
to BP, â1, is considered a success if ‖â′1 − a′1‖/‖a′1‖ ≤ 0.001.
For Fig. 4(a)–(c) we set nmax = 5 to allow for reasonable
computation times.

In Fig. 4(a), the phase diagram is constructed by conducting
100 trials for each combination of normalized sparsity level
(s/M ) and normalized measurement number. In these trials, the

Fig. 4. Phase Transition Diagrams for CS with RGSFs. (a) Phase diagram
for RGSF CS using BP to solve (47) with η′ = 0. (b) Dependence of the phase
transition on the RGSF cutoff,λc, for a fixed normalized measurement number of
0.6. Each plot usesnmax = 5 and is conducted with 100 trials at each normalized
sparsity and measurement number.

support ofa′1 is selected uniformly at random and the coefficients
are i.i.d. random variables of the formx+ iy, where bothx and y
are independent and distributed according to the standard normal
distribution. As can be seen in Fig. 4(a), there is a sharp transition
from a success rate of near unity (i.e., uniform recovery) to a
success rate of near 0 as is typically seen in CS phase diagrams
like those in [14], [19].

An important part of the RGSF phase diagram to understand
is its dependence on the RGSF cutoff λc. This is because the
number of measurements needed for successful CS depends on
λ−1
c , and ideally, the cutoff is set as low as possible. Note the

presence of this parameter in (47) is due to the uniform bound
on the RGSFs, which is dominated by the RGSFs with small
concentrations. Fig. 4(b) shows the dependence of the phase
transition on λc. For Fig. 4(b), the normalized measurement
number is fixed at 0.6 and the coefficients a′1 are set to have
their support on the s RGSFs with the smallest concentrations
λμm
i with random values of the same form as described for

Fig. 4(a). The selection of this particular support is to ensure
that the RGSFs that contribute the most to the selection of λc are
active in the CS problem. As can be seen in Fig. 4(b), decreasing
λc indeed reduces the sparsity level at which the transition to
successful CS recovery occurs.
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Fig. 5. Near-field Reconstruction Θ2 = 35π/36. Near-field reconstruction
(a) and relative error (b) when R is nearly all of SO(3). (a) and (b) share the
legend in (a).

E. Compressive Sensing Recovery for an Example Field

To verify that CS recovery using RGSFs becomes accurate
for the function on the entirety of SO(3) as R becomes close to
all of SO(3), we investigate CS recovery using the RGSFs with
Θ2 = 35π/36, or a loss of 5 degrees of measurement availability
in β. We select λc = 0.5 as to remove at least several RGSFs
from the reconstructions. We must select a moderately sized λc

because most of the RGSFs will have at least some energy in R
due to the small size of Rc and a relatively small band-limit. In
Figs. 5 and 6, we plot the near-field and far-field reconstructions
and relative error for all methods. Note, the relative error for WD
CS is not numerically zero since there is a finite error tolerance
using BP in SPGL1. The reconstructions are plotted in dB in
terms of magnitude relative to the actual field for a given φ
slice, i.e.,

Relative Magnitude = 20 log10

⎛⎝
∣∣∣F̂ ∣∣∣

maxθ |F |

⎞⎠ , (56)

and the relative error of the field in dB is given by

Relative Error = 20 log10

(
|F − F̂ |

|F |

)
, (57)

Fig. 6. Far-field Reconstruction Θ2 = 35π/36. Far-field reconstruction
(a) and relative error (b) when R is nearly all of SO(3). (a) and (b) share the
legend in (a).

where F̂ is the estimated reconstruction of F . From θ = −π/2
to θ = π/2, the near-field reconstructions are accurate to around
50 dB for all methods except the Padded WD CS method. How-
ever, for the RGSF CS and Padded FFT methods, we see a decline
in accuracy beyond this range; the relative error increases to near
0 dB inRc. This is expected since the RGSF reconstruction lacks
several functions concentrated on Rc and the padded FFT has
zeros inserted in this region. The far-field reconstructions are
similar to those of the near field.

We now compare the reconstruction methods when a much
larger portion of SO(3) is inaccessible. In particular, we select
Θ2 = π/2 and λc = 0.05. The near-field and far-field recon-
structions are shown in Figs. 7 and 8, respectively. Recall that
with such a restriction on R, we only expect accurate field
reconstructions within R. For this case of R and λc, we see
that the near-field reconstructions for all but the Padded WD CS
methods are accurate in nearly all of R, with deterioration near
the edges of R. The far field shows a similar behavior, with the
degradation occurring slightly more rapidly. In Rc we see that
the Dropped WD CS method overestimates the field by a large
margin while the other methods have field values near zero as
expected.
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Fig. 7. Near-field Reconstruction Θ2 = π/2. Near-field reconstruction
(a) and relative error (b) when R is half of SO(3). (a) and (b) share the legend
in (a).

To investigate the performance of each restricted measure-
ment method further, we plot the m = 0 spherical wave coeffi-
cientsamn in Fig. 9. Since the field is axisymmetric, theamn should
be nonzero only when m = 0. The Padded FFT method gives
numerical zeros for all SW coefficients withm �= 0. On the other
hand, the other methods have nonzero coefficients with m �= 0.
For the RGSF CS case, the energy contained in these coefficients
is less than 3× 10−4 of the total energy, for Dropped WD CS it is
less than 4× 10−5, and for Padded WD CS it is 3× 10−2 of the
total energy. Fig. 9 demonstrates that the RGSF CS and Padded
FFT methods have good performance for both SW coefficient
relative error and absolute phase error in radians. However, the
Dropped WD CS and Padded WD CS methods have large errors
visible just by looking at the coefficient magnitudes (Fig. 9(a)).
It is interesting to note that the Dropped WD CS method appears
to oscillate around the actual coefficients. From Figs. 7 to 9 we
see that the RGSF CS method performs the best compared to
the other restricted measurement methods and the Padded FFT
method as a close second.

We now analyze the performance of the RGSF CS method
as we vary λc. For this study, we use Θ2 = π/2 and vary λc

from 0.05 to 0.95 in increments of 0.025. Fig. 10(a) plots the
near-field relative error and Fig. 10(b) plots the relative error
between the actual Wigner D-function coefficients a and those

Fig. 8. Far-field Reconstruction Θ2 = π/2. Far-field reconstruction (a) and
relative error (b) when R is half of SO(3). (a) and (b) share the legend in (a).

Fig. 9. Reconstructed SW Coefficients Θ2 = π/2. (Top) Reconstructed SW
wave coefficients amn with m = 0. (Bottom left) SW coefficient relative error
for RGSF CS and Padded FFT reconstructed SW coefficients with m = 0.
(Bottom right) Absolute Phase error in radians for RGSF CS and Padded FFT
reconstructed SW coefficients with m = 0. All figures share the same legend.
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Fig. 10. RGSF Recovery vs. λc. (a) The relative error for the RGSF CS
near-field reconstruction and (b) Wigner D-function coefficient relative error. In
(a) the darker curves indicate smaller values of λc.

from RGSF reconstruction,

Coeff. Relative Error =
‖a− â‖
‖a‖ , (58)

where â = U ∗√Λ
−1
â′, and â′ is constructed from the recovered

â′1 and â′2 = 0. In Fig. 10(a), the lighter the curve corresponds
to the larger cutoff λc. Thus, as λc decreases, the reconstruction
performance improves. Similarly, if we look at the relative error
of the field and â, the lower λc values provide better recon-
struction performance in the RGSF basis. Not depicted here,
however, is the case where λc becomes very small. Experiments
have shown that if λc is taken to be too small, the reconstruction
begins to grow in Rc to values well above the true field. This is
likely due to numerical accuracy problems in the basis pursuit
method; functions with small λμm

i contribute so little to the
measurements in R that minor fluctuations in their coefficients
can lead to possibly sizable changes in the field on Rc. In
summary, setting λc too large can lead to poor reconstructions
depending on the amount of energy the field has in Rc while
selecting λc too small leads to errors due to an effective freedom
to add RGSFs with small concentrations without a large effect
on the measured portions of the field. Thus, two factors should
go into picking an ideal λc, an idea of how well concentrated the
field is (the larger this is, the larger λc can be) and the maximum
magnitude of the RGSFs discarded on R.

We last analyze the performance of the RGSF CS method with
respect to additive measurement noise. Theorem 6, in particular
(50), states that the coefficient relative error of the reconstruction
â increases with increasing noise. In Fig. 11 we plot the normal-
ized coefficient error, (58), as we increase the magnitude of the

Fig. 11. WignerD-function Coefficient Error vs. Noise Level. Relative error as
a function of measurement noise level for the Wigner D-function coefficients of
the example field reconstructed using RGSF CS withΘ2 = π/2 andλc = 0.05.

additive measurement noise. Again we have selected Θ2 = π/2
and λc = 0.05. Each entry of the measurement noise vector is
i.i.d. and uniformly distributed on the complex unit disc with
radius rnoise that gives the specified Peak Signal to Noise Radius
ratio in dB,

Peak Signal

Noise Radius
= 20 log10

(
maxα,β,γ w(α, β, γ)

rnoise

)
. (59)

As can be seen in Fig. 11, if the noise level increases (Peak
Signal/Noise Radius decreases), the normalized coefficient er-
ror increases. Note, noise levels below 40 dB are such that
the noise would have a magnitude approaching the size of
the barely forming side-lobes in the near-field. This means
these noise levels are quite large; typically one expects noise
well below the side-lobes. In the more physical case where
PeakSignal/NoiseRadius ≈ 40 dB, RGSF CS coefficient ac-
curacy is about on par with the noise-less case depicted in Fig. 10.

F. Remarks on Reconstruction Performance

The results in Figs. 5 and 6 support the expectation that the
ideal case for reconstruction is when all of SO(3) is available
for measurements and we can perform CS using the Wigner
D-function basis. However, when only R is available for mea-
surement and Rc is sizable, Figs. 7 to 9 show that CS with the
truncated RGSF basis provides the best performance for both the
near-field and far-field reconstructions. Specifically, the Padded
Wigner D-function approach fails to accurately reconstruct the
main beam. This is likely due to the zero padding procedure
weighting points for which we do not know the field. The
Dropped Wigner D-function approach performs well in R but
vastly overestimates the field in Rc, hinting that the method
recovers incorrect SW coefficients (this is confirmed by Fig. 9).
This is likely due to having enough freedom in the Wigner
D-function basis to fit the field but at the cost of an effectively
arbitrary field on Rc (similar to spline fitting with free-floating
ends). The FFT and RGSF methods both perform similarly,
though the RGSF method requires fewer measurements. How-
ever, close inspection shows that the near-field reconstruction
from the FFT method is subject to Gibbs phenomena near the
edge of R that is worse than the ripples from the RGSF method.
It is also worth noting that the CS method using the RGSFs is the
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only CS method here that guarantees accurate recovery and the
fact that the Dropped Wigner D-function method performs well
in R is a fortunate outcome. Lastly, the investigations in Figs. 10
and 11 show that, for the tested field, the RGSF CS method is
not all too sensitive to λc and the addition of noise, at least when
λc or the size of the noise are not too extreme.

VI. CONCLUSION

Motivated by the limitations of measurement platforms in
spherical near-field to far-field transformations, we have estab-
lished a theoretical guarantee for the success and accuracy of
compressive sensing on a restricted spherical domain for band-
limited functions on SO(3), Theorem 6. The guarantee uses a
BOS of localized Slepian functions (RGSFs with concentration
less than λc) on the measurement domain to limit the growth
of the BOS bound and thus the number of measurements for
the CS recovery is guaranteed. Numerically generated phase
diagrams showed that this dependence on RGSF concentration
cutoff, λc, is present in practice, but the degree to which it
affects real-world application is only qualitatively understood.
Future work can aim to further quantify and minimize the
dependence measurement numbers have on λc in CS guarantees
like Theorem 6. It is worth noting that the bound for the RGSFs
is over the domain SO(3), while the bound is only needed for
the sub-domain R. Thus, improved bounds for the RGSFs as
well as Slepian functions on more general domains would be an
interesting topic for future work.

The method of constructing the RGSFs in this paper is based
upon performing many integrations to construct the matrix D in
the functions’ defining eigenvalue problem. Many domains like
the sphere have operator constructions that allow for defining
this eigenvalue problem without integration [24]. Future work
might focus on improving the RGSF constructions by attaining
an explicit form of such an operator for the RGSFs. Moreover,
finding a fast Slepian transform for the RGSFs, as in [32], would
also improve upon the numerical performance of the restricted
measurement domain compressive sensing problem as treated
here.

In our tests, we saw that CS with the truncated RGSF basis can
have relative error comparable to the classical restricted domain
method with roughly 60% as many measurements. Additionally,
in our tests, CS with the truncated RGSF basis outperformed
the tested forms of measurement restricted CS using Wigner
D-functions. These Wigner D-function methods tend to give
larger errors in reconstructed SW coefficients and have no the-
oretical guarantee of recovery, unlike the RGSF based method.
Our numerical experiments also showed that CS results using
the RGSFs improve as the number of Slepian functions kept
for recovery increases. However, the reconstructions suffered
beyond the measurement domain. Future work can look to
include more a priori information about a field’s coefficient
structure in the RGSF basis so that performance improves
in regions beyond the measurable domain while also further
decreasing the number of measurements needed for accurate
reconstructions.

Lastly, as presented, the RGSF-based CS method uses random
measurement positions. It is sometimes desirable to instead

have deterministic measurement positions. To that end, future
research can investigate the use of RGSFs and samples on
R paired with now theoretical approaches, iterative coherence
minimization, or other coherence-minimizing algorithms for
constructing deterministic measurement matrices from known
basis functions.
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