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Abstract

Linear response laws and causality (the effect cannot precede the cause) are of
fundamental importance in physics. In the context of classical electrodynamics,
students often have a difficult time grasping these concepts because the physics
is obscured by the intermingling of the time and frequency domains. In
this paper, we analyse the linear response laws and causality in the time
and frequency domains with the aim of pedagogical clarity. We will show
that it is easy to violate causality in the frequency domain by making a
vanishing absorption approximation. Furthermore, we will show that there
can be subtle differences between Fourier transforming Maxwell equations and
using a monochromatic source function. We discuss how these concepts can be
obscured and offer some suggestions to improve the situation.

1. Introduction

When encountering Maxwell’s equations in matter for the first time, students are faced
with many conceptual, as well as mathematical, difficulties. In the time domain, the four
macroscopic Maxwell’s equations, namely

V.D = dnp, V.B=0,
10B 10D 4 (1)
VxE+-220, vVxH--—=-29
c ot c ot c

are straightforward enough. The problem arises in the constitutive relations connecting E
and D or B and H. While the time-domain Maxwell equations are real and involve only real
quantities, the associated response functions are temporally non-local and their very definition
involves integration with respect to time. To professionals, this issue is well understood and is
almost always side-stepped notationally by writing the response equations as

D =c¢E and H=,"'B, 2)

and mentally juggling the time and frequency domains. Here, for simplicity, we have assumed
that the medium is linear, isotropic and homogeneous (LIH). Experts understand that (2) means
either
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Figure 1. The input signal S(z) is shown along with the output signal S(¢) — C) () of a system that
only absorbs the Cj (t) component of S(¢), without affecting other components.

(a) Fourier-domain relations of general validity (within LIH assumptions) or

(b) time-domain relations valid only for monochromatic fields.

But simultaneously presenting (1) and (2) to students (as is done in popular textbooks
[1-3]) can mislead and confuse them; it obscures the important temporal non-locality of the
response functions, mixes time and frequency domain concepts and inserts complex quantities
into manifestly real equations. To avoid a possible source of confusion, we use the phrase
‘Fourier domain’ instead of ‘frequency domain’ because the latter may also refer to a time-
domain relation with a monochromatic source.

Moreover, students fail to understand the relationship between absorption, dispersion and
causality (the effect cannot precede the cause [4]). To see the interplay between absorption,
dispersion and causality pictorially, we follow Toll’s ingenious presentation [5] by considering
an input signal S(¢) that is zero for # < 0. The input S(¢) is a weighted sum of many sinusoidal
components, such as C; (t) = sin(w;t 4+ 1), each of which extends from t = —oo to t = oc.
Note that the weighted sum of all sinusoidal components produces a zero input signal for ¢ < 0.
If a system only absorbs one component, e.g., C; (¢), without affecting other components, then
the output of such a system would simply be S(t) — C; (¢), which is non-zero for t < 0; see
figure 1. Such a system is impossible because it violates causality; the output is non-zero before
the onset of the input signal. Therefore, for causal systems, an absorption of one frequency
must be accompanied by phase shifts of other frequencies in order to produce a zero output
fort < 0, and the necessary phase shifts are prescribed by the dispersion relation. Moreover,
the converse is true as well; namely, a phase shift of one frequency is necessarily accompanied
by an absorption at other frequencies. From Toll’s argument, we conclude that it is impossible
to design a physical system that is causal and dispersionless. Therefore, when one speaks of
dispersionless media, one violates a sacred physical principle (causality).

This paper is intended not only for instructors who teach advanced undergraduate
and beginning graduate students, but also for the graduate students. The mathematical
sophistication needed to understand this paper is essentially that of a beginning graduate
student. However, throughout the paper, we extensively use the theory of the tempered
distributions, with which a typical beginning graduate student may not be familiar. To remedy
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this deficiency, we have included an example-driven tutorial on the formal theory of tempered
distributions in the appendix.

2. Background

The time-domain relationship between D and E for an LIH and time-translationally invariant
medium is given by!

oo
D =E +4xP and P(t):/ x @ —)E@)dr, (3a)
—00
where
’ ’ ’ , 1, t—t' >0
xXt—t)=a@—-1)OC—-¢t) and O —1)= 0 1—1 <0 (3b)

The appearance of the Heaviside step function ® in the definition of the electric
susceptibility x reminds us that the polarization vector P can only depend on the past values of
the applied electric field E. Therefore, (3) gives a causal relationship between the displacement
field D and the applied electric field. Taking the Fourier transform of (3) yields

D(») = E(») + 47P(w) and P(») = ¥ (0)E(w), )
with the Fourier transform pair given by
flo) = FIf@0)] = / F(o) et ar, (5a)
~ 1 [~ .
10 = F 1w = o [ Fere do. (5b)

Under suitable mathematical conditions, the principle of causality in the time domain
translates into the Kramers—Kronig (KK) relations (the Hilbert transform pair) in the Fourier
domain, namely

- - 1 [ Rex

Im 7(@) = HIRe ¥ ()] = —— ][ - (Z) dn, (6a)
- - 1 [ Imy

Reftw) = mzonl = f 5D ay, (6b)

where Re X (w) and Im ¥ () are the real and the imaginary parts of x (w), respectively, and
+ denotes the Cauchy principal value integral. In free space, by definition, x (t — ') = 0
and consequently, the KK relations are trivially satisfied. The KK relations can be derived in
‘two lines’ by using the Fourier representation of the Heaviside step function and utilizing
the freedom to define o (¢t — ') for t — ¢’ < 0 [6]. A lengthier but more traditional derivation
of the KK relations is available in [7]. This derivation is self-contained and does not assume
a priori knowledge of the theory of functions of a complex variable. For a historically accurate
account on how the KK relations were first derived, see [8].

In general, it is difficult to establish an equivalence between the KK relations (6) and
the causality (3b). If X () is a square-integrable function, then the Titchmarsh theorem [9]
guarantees that (6) and (3b) are equivalent. In other words, x (t — t') o« (¢t — ') if and
only if X (w) satisfies (6). The square-integrability requirement on ¥ (w) may be somewhat

! For our purposes, it is more convenient to work with (3) than with D = ffooce(t — )E(')dt’, where
et—t)Y=8t—1t)+drx(@t—1).
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Table 1. A brief description of the symbols introduced in the appendix.

Symbol Description

S The Schwartz class

S The class of tempered distributions

(f, o) = ffzo f@®)o(r)de Tempered distribution f; f € S and ¢ € S
(f*xy¥) (@) = ffooo f@—t)y@')dt' Convolution of f withir; f € S'and ¥ € §
supp [f] Support of f; f € §

relaxed. It can be shown that if X'(w) is bounded but E(¢) and P(¢) are square-integrable
functions, then (6) and (3b) are equivalent [5]. Unfortunately, these conditions are generally
not satisfied, in fact, they are not even satisfied in the idealized examples considered in this
paper. Therefore, we must part with our naive notion that y is a classical function and treat
it as a generalized function (distribution). For our purposes, it will be sufficient to treat x (¢)
as a tempered distribution. A reader not familiar with the formal theory of the tempered
distributions should read the appendix which, for our purposes, serves as a self-contained
tutorial on tempered distributions. For the reader’s convenience, table 1 provides a summary
of the notation introduced in the appendix. From this point on, unless explicitly noted otherwise,
the symbol x (¢) should be interpreted as a tempered distribution, i.e. x (#) € §’. Consequently,
the convolution integral in (3a) and the Fourier transform pair given by (5) should also be
interpreted in a distributional sense; see appendix A.1. Strictly speaking, the Hilbert transform
pair given by (6) should also be interpreted in a distribution sense. However, for our purposes, it
will be sufficient to think of the Hilbert transform as a ‘generalized” convolution of the singular
function 1/w (Hilbert kernel) with a tempered distribution f(w). For a more mathematical
treatment of the Hilbert transform of the tempered distributions, see [10—13]. In 1958, Taylor
[14] (also, see discussion in [15]) rigorously established the equivalence between the causality
and the KK relations when X () is a tempered distribution. This is a very important result
that we will use repeatedly. We will force X(w) € S’ to satisfy the KK relations, thereby
guaranteeing that y (r — ¢') vanishes for ¢t — ¢ < 0. In other words, Taylor’s result gives
causality meaning in the Fourier domain.

To explore these fundamental issues in a pedagogical context, we will consider two
textbook models that are used to derive or explain the dispersion of electromagnetic waves.
The first is the Drude model of conduction in metals. The second is the damped harmonic
oscillator, which arises in semi-classical models of atomic absorption. The former is just a
damped harmonic oscillator model with a spring constant of zero, and where we interpret the
damping in terms of electron collisions.

3. The Drude model

In a metal, the motion of a conduction electron of charge —e and mass m under the influence
of an electric field E is given by

d’r 1dr e

@‘F;a——EE, (7a)
where T is the collision mean free time [16]. Substituting (¢ — ¢')n for E and taking the
Fourier transform, see appendix A.1, yields

w(‘” + %)’é(w) =@  ad  E@ =en, (7b)
m
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where g(w) denotes the Green function, n = j§ (x+y+1z), and {x,y, z} is the standard

basis for the three-dimensional space. Using P(w) = —n.eg(w), we see that the electric
susceptibility is given by
1\ e*n,
olo+ - |x(w) =— , (8a)
T m

where n. denotes the conduction electron density (assumed to be constant). When solving (8a)
for ¥ (w) we must remember that X' () is a tempered distribution; in other words, we seek a
distributional solution to (8a). The distributional solution consists of two parts: the particular
part X, (w) given by the ‘naive division of (8a), namely
00
w(tw +i)’
where o9 = ¢?n.t/m is the static conductivity, and the homogeneous part ¥,(w), which
satisfies

Xp (@) = (8D)

<w<w + %)ih(w), ¢><w)> = (0. () (80)

for all ¢ € S. The solution to (8c) is of the form of (A.28) and not of (A.36) because w + i/t
never equals zero for real w and finite 7. In other words, supp [ X (w)] = {0} and not {0, —i/z}.
Therefore, as shown in the first example in appendix A.2, the form of the full solution to (8a)
is given by

X (@) = —oo (— + Xh (w)) , where Xh(@) = cod(w). (8d)
w(tw +1)

To find the unknown constant ¢y, we require that the response of the system be causal.
According to Taylor [14], the causality requirement is the same thing as requiring that

ImyY = H[Rex], which yields ¢o = —m. Therefore, the causal electric susceptibility is
given by
(@) = —00 (——— —78(w) ), 9
X (@) 00 (w(tw—H) 7 (w)> 9a)
Xt =) =FF@l =0 (1-e"7 ) 0u -1). (9%)

Note that x (t — ') is zero for ¢ < ¢’ and increases monotonically to its maximum value
of og for t > #’. The rate of the increase is controlled by the collision mean free time. In the
next two subsections, we will study the effects of x (¢ — #’) on the response functions when a
constant or monochromatic electric field is applied.

3.1. A constant electric field

Suppose now that a constant electric field Eq was turned on at # = 0. Substituting
E(') = EgO(¢') and (9b) into (3a) yields

P(t) = oy (z—r+re—f)EO®(t), (10a)
and the current density is given by

J@) = % =gy (1 - e*%> EyO(r). (10b)

The time dependence in (10b) reminds us that when we connect a wire to a battery,
the current in the wire does not instantaneously reach its Ohm’s law steady-state value. The
rate at which the current reaches the steady-state value is controlled by the collision mean free
time 7, as evident from the exponential term in (10b). Of course, (10b) reduces to Ohm’s law,
J = ooEg, whent > .
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3.2. A monochromatic field

Another simple situation is a monochromatic driving field of angular frequency wy that has

existed since the beginning of time (' = —o0). Substituting E(¢') = E( cos(wgt’) and (9b)
into (3a) yields
D(t) = A1Eg cos (wat) + A2 Eq sin (wqt) (11a)
where
4oyt 4oy
Al=1— ——— and Ay = —————. 115
! 1+ 12w} 2 wq (1 + 7%03) (115)

From (11a), we see that D(#) has one component that oscillates in phase and one
component that oscillates out of phase with the applied field. The out-of-phase oscillations are
caused by collisions of the electrons with the ions (absorption). We can put (11) into a form
of (2) if we let

v

¢ =A +iA, and E = Eje i; (12a)
and then, (11) becomes
D(t) = Re(¢E). (12b)

Note that, in general, D(¢) # Re(¢é )Re(E). Thus, what professionals mean by (2) is really
(12) if they are talking about a monochromatic applied field. But what is €? To answer this
question, let us rewrite (12a) in an illuminating form, namely

é—1 . (o))
g K= T

Note that (13) has a simple pole at wq = 0. The root cause of this pole is our assumption
that the medium is homogeneous, and the definition of homogeneity clearly depends on the
spatial wavelength of the interrogating field [17, 18]. Thus, (13) may be devoid of physical
reality near wg = 0. Be that as it may, the resemblance between y (wq) and X (w) is uncanny
if we replace wq with @ in (13). But is such a comparison of x and X meaningful? Strictly
speaking, it is not, because y is a classical (ordinary) function and ¥ is a tempered distribution
(generalized function). Nevertheless, we want to compare these two objects by ‘promoting’ x
to be a generalized function. Let X (w) = ¥ (w) — x (@), and then

o0

(X (), p(w)) = f 008 ()¢ (w) dw = wapp(0) (14)

—00

13)

for all ¢ € S. From (14), we see that supp [X(w)] = {0}, i.e. the ‘promoted’ ¥ (w) and
X (w) differ in a neighbourhood of @ = 0. In the laboratory, we actually make a Fourier-
domain ‘measurement’ in the time domain by driving the system for a very long time with a
monochromatic field [19]. Thus, we experimentally measure x (wg) and not X (w). Moreover,
it is X (w) that satisfies the KK relations and not x (wq), even if we ‘promote’ x (wq) to a
generalized function. This crucial difference between X (w) and x (wq) is often missed by
students.

A mathematically inclined reader might object to the usage of E(t') = E cos(wqt’) for a
driving field. Clearly, cos(wgt’) ¢ S but we have only defined the convolution (A.18) between
a distribution in §’ and a function in S. Of course, physically we know that a starving graduate
student had to turn the field on and off. If we assume that the field was turned on/off in a
smooth and slow fashion, then it could be approximated by cos(wgt") exp[—(at’)z], which
does belong to the space S. A similar physical argument can be used to justify the usage of
the Heaviside step function in section 3.1. Moreover, under certain conditions, it is possible to
define convolution of two tempered distributions [20]. This definition is beyond the scope of
this paper but, if used, it would eliminate the need for the above physical argument.
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4. Plasma

A limiting case of the Drude model is dilute neutral plasma with very large collision mean
free time. If we try to expand (9a) around 1/t = 0, we will obtain a non-causal x (w) because
the homogeneous solution ¥y, (w) changes form in this limiting case. To see this, expand (8¢)
around 1/7 = 0 to obtain

(@ X0 (@), ¢(@)) = (0, (), (15a)
for all ¢ € S. The form of the solution to (15a) is given by, see (A.31),
Xn (@) = cpd(w) + ¢18' (w), (15b)

which differs from the homogeneous part of (9a) by a §’ (w) term. Therefore, the full solution
to w?¥ (w) = —e*n./m is given by

. @ (1 ,

X(@)=——|— +cdw) +ci1d ()], (150

4 \w
where a)f, = 4me’n./m and wp is called the angular plasma frequency. To find the unknown
constants ¢g and ci, we use Taylor’s causality requirement Im)Y = H [Re)], which yields
co = 0 and ¢; = im. Therefore, the causal electric susceptibility is given by
2

f) =2 (L i ds 16
X(w)__H E-i‘lﬂ@ (w) ), (16a)

e’n.

xt—1)=F ' [X(o)]= - (t—1)O —1). (16b)

We compare (16a) to a common textbook expression for the electric susceptibility of

dilute neutral plasma, given by [16]
Py =~ ] (7
T
This differs from (16a) in a neighbourhood of w = 0. The difference is caused by the fact that
(16a) is causal and valid for all w, unlike the textbook version (17), which is only valid for
high enough frequencies, namely o > 1/7.

The above example illustrates that the approximation in the Fourier domain must be made
with care if we insist on a causal electric susceptibility. It is interesting to note that no such
care is necessary if the approximation is made in the time domain. For example, expanding
(9b) around (¢t —¢')/t = 0 immediately yields (16b), which is clearly causal.

4.1. Plasma in a constant electric field

Next, let us consider a plasma in a constant electric field Ey that was turned on at ' = 0.
Substituting E(z") = E¢®(¢') and (16b) into (3a) yields
ene

P() = PE O @1). (18)
2m

From (16b) and (18), we see that the electric susceptibility is linear in time and that the
polarization vector is quadratic in time. The quadratic dependence of P(¢) on time signifies
that the dilute neutral plasma is accelerating uniformly under the influence of the applied static
electric field. Moreover, from (3a), we see that D grows quadratically in time and that att = 0
the response field D is equal to the applied field Eo.
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4.2. Plasma in a monochromatic electric field

Finally, if we drive the plasma with a monochromatic field of angular frequency wy that
existed since 1’ = —oo, we will see another source of confusion for students. Substituting
E(t') = Eq cos(wgt’) and (16D) into (3a) yields

2
D) =€E®) and E—1=dnay (wg) = —%. (19)
d
Again, if we replace wyq with w in (19) and ‘promote’ x (w) to be a tempered distribution, then
the ‘promoted’ x (w) differs from ¥ (w) only in a neighbourhood of w = 0. Also, note that all
quantities in (19) are purely real. Of course, D(¢) oscillates in phase with E(¢) because we have
effectively ignored collisions (absorption) in our approximation. If we let E =E, exp (—iwgt),
then (19) may be written as D(#) = Re(€ )Re(l:l), which to a student may confirm an improper
interpretation of (2).

5. Damped harmonic oscillator

A damped harmonic oscillator is a simple model for the motion of a bound electron in a
dielectric. The equation of motion in the time domain is given by

&¢r  dr e

— +y— +wygr =——E, 20a

a2 e T m (20a)
where wy is the natural angular frequency and y is the radiation damping. The Green function
for (20a) (obtained in the same manner and notation as in section 3) is

w—maﬂw—wJEM)ziﬁwx (205)
where

2
wy = Es — i% and  s=Jof— (). 20¢)
If we assume that each electron in the dielectric oscillates with the same natural angular
frequency, then using P(w) = —enpg(w) yields
2
~ € Ny
(w—w)(w—w )X (w) = T (2la)
where n;, denotes the density of the bounded electrons (assumed to be constant). From (21a), we
see that ¥ (@) has two simple poles in the complex w-plane. As we will soon see, the location
of these poles in the complex w-plane will dictate the form of the homogeneous solution
%h (). First, consider the simplest under-damped case, namely when s > 0 and y # 0. In this
case, w — wy and w — w_ never equal zero for real w. Therefore, the homogeneous solution

is simply zero, X, (w) = 0, and the full solution is given by

(@)= — T ! 21b)
)= (w—wp)(w—w_)’
2 —L(t—1) o Y
X —1) = F[F()] = ° Snls@ = Ol gy, 2l0)
m S

Note that we did not have to impose Taylor’s causality requirement, Imy = H [Re)x], as
it was ‘automatically’ satisfied by (21b).

To get a better understanding of (21¢), let us put it in a constant electric field that turns on
at ' = 0. Substituting E(+') = Eq®(¢") and (21¢) into (3a) yields

P(t) = P0[1 - e—5’<cos(sz) + %fﬂ))]@m, (22q)
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where

eznb

Py = —E,. (22b)
maw;

From (22), we see that P(#) monotonically increases from zero at f = 0 to some maximum
value, and then oscillates around Py before finally settling at Py. The oscillations around Py
remind us that the bounded electrons oscillate around the new equilibrium position.

In the case of vanishing radiation damping, we may set y = 0 in (21¢) to obtain

’ eznb . ’ /
X@ —1)=——sin[wy(t —1)]OF — 1), (23)
niwo

which is clearly causal. But if we set y = 0 in (215), we would violate causality! To obtain a
causal ¥ (w), we set y = 0 in (21a) to obtain
2

~ € Ny
(0 — o) (0 + wp) X (@) = T (24a)
From (A.35) and (A.36), we see that the form of the full solution to (24a) is given by
- eny, 1 1 -
X(w) = 3 - + xn(@) |, (24D)
mwg | W + wo w — o

where
Xn (@) = bpd(w + wy) + cod(w — wp). (24¢)

As in previous examples, we find the unknown constants, by and ¢y, via Taylor’s causality
requirement, Im¥ = H [Rex], which yields by = —im and ¢y = ixr. Therefore, the full casual
solution to (24a) is given by

nye

2 1 1
X (w) = |: —imd(w + wy) — +imd(w — a)o)] , (24d)
2mwy | w + wy w — o

and the inverse Fourier transform of (24d), of course, yields (23). From the above example,
we again conclude that when considering limiting cases of the electric susceptibility in the
Fourier domain, we must be careful not to inadvertently violate causality. However, in the time
domain, we do not have to worry about the solution not reducing to a proper form in these
limiting cases.

6. Concluding remarks

In this paper, we have taken a somewhat contrarian approach to the linear response laws
of classical electrodynamics by looking at the response functions in the time domain. The
advantage of the time domain is that all quantities are purely real and causality is naturally
expressed in terms of time. The disadvantage is that the response functions are temporally
non-local, so most of us get tired of writing convolutions on the blackboard and quickly
slip into a short-hand mix of time and frequency/Fourier domain notations that can confuse
students profoundly.

While it is perfectly reasonable to avoid complications, such as dispersion, in introductory
physics courses, by the time students are in their third or fourth year of physics study, it is
important to expose them to the fundamental principles associated with a classical, macroscopic
picture of matter. In particular, we believe that the following should be emphasized.

o Causality is easy to enforce in the time domain, but the constitutive relations are non-local
in time and involve convolution integrals.
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e The constitutive relations are mathematically simple in the Fourier domain, but causality
is given by the KK relations (the Hilbert transform pair).

e We should make it clear whether we are really transforming into the Fourier domain, or
whether we are assuming a monochromatic source in a time-domain experiment. Very
often the results look the same, but as we have shown, confusing the two can lead to
serious misunderstandings.

e Finally, it should be emphasized that Maxwell’s equations (in the time domain) are purely
real and involve only purely real quantities. The Fourier transformation promotes variables
to the complex plane. As teachers, we should be careful when speaking of the real and
imaginary parts of the response function and preface our remarks with a note that we are
working in the non-physical, but highly useful, Fourier domain.
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Appendix. Distribution theory

The ordinary (classical) functions may be thought of as a mapping between two sets of numbers.
We can extend the idea of an ordinary function by considering a mapping (functional, if you
will) between a set of functions and a set of numbers. The physical reason for extending the
idea of an ordinary function lies in our inability to experimentally measure a function at a point,
e.g., see [21, pp 1-2], [22]. Let f(x) represent temperature at some point x. To measure the
temperature at that point, we place a thermometer there to obtain a value for f(x), but do we
actually obtain a value of the temperature at point x? The bulb of the thermometer has a finite
size; thus, what we measure is an average temperature around the point x. Mathematically, an
average is a weighted sum, and our measurement only reveals the value 77 = f fx)@ (x) dx,
where ¢; (x) is essentially zero away from the bulb of the thermometer. If we make another
measurement of the temperature at point x using a different thermometer, then we would
measure T, = f S (X)) (x) dx and, hopefully, the ‘true’ temperature T =~ (T} + 1) /2. The
above discussion is meant to serve as a physical motivation for defining what we will call
generalized functions as certain linear functionals. Generalized functions are also called
distributions, and we will use both terms interchangeably. Our presentation of the generalized
functions closely follows that of Strichartz [21]. A reader interested in a more detailed study
may also find [23-26] helpful.

For our purposes, it will be sufficient to consider only a special class of distributions,
namely the fempered distributions. Before we can formally define tempered distributions,
we must first define a set of ‘good’ functions. This set of ‘good’ functions is also called
the space of test functions. For the tempered distributions, the space of test functions,
denoted by S, contains all real or complex-valued functions ¢ (¢) that are classically infinitely
differentiable and, along with all its derivatives, vanish at infinity faster than the reciprocal
of any polynomial. For example, any function of the form Zi:’:o cut" exp(—t?) belongs to
S. We are now ready to define the class of tempered distributions, denoted by S, as all
continuous? linear functionals on S. A linear functional f on S is a rule by which we assign to
every test function ¢ (¢) a (real or complex) number denoted by (f, ¢), such that the identity

2 The definition of continuity of linear functionals is rather technical and not necessary for our purposes.
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(f, c101 + ca2) = c1{f, d1) + c2(f, ¢2) is satisfied for arbitrary test functions ¢, and ¢, and
(real or complex) numbers c¢; and c¢;. The terminology and notation used for distributions can
be confusing at times because the phrase ‘function f or even generalized function (distribution)
f’ may refer to f itself or to the value of (f, ¢). In other words, no distinction is made between
a distribution and a ‘function’ from which the distribution was obtained®. To make the notion
of tempered distributions more concrete, let us consider a few simple examples. Let us find a
distribution defined by f = ©’(¢):

(4O
Tf—< & ,¢(t)>
[T den) I N 100
_[w o ¢(t)dt = [wO(t) m dr (A1)
 d,
=—/0 %dx=—(¢(oo>—¢(0)>=¢(0>, (A2)

where we integrated by parts in (A.1) and the integrated terms vanished because ¢ is a ‘good’
function, i.e. ¢ € S. By comparing (A.2) to the sifting property of the Dirac delta function

(8(2), ¢(1)) =/

oo

§(t)e(t)dr = ¢(0), (A.3)

we conclude that the (generalized) derivative of the Heaviside step function equals the Dirac
delta function. We can even differentiate (in a distributional sense, of course) more complicated
functions. Let f = g(¢)8' (), where g(¢) is a polynomial of any degree; then,

ds
Ty = <g(t)%, ¢(t)>

L ds() o [T 0 ;
- /_ (g(’)T> $(1) di = /_ S (g ar.

oo oo
Integrating by parts and noting that the product of g(t) and ¢(¢) is still in S (so that the
integrated terms vanish) yields

I dp()  dg(t)
Ty = /_OOS(t)<g(t) T ¢>(t)> dr
= —g(0)¢'(0) — g'(0)¢(0). (A.5)

We can write (A.5) in a more standard form that does not involve the derivatives of ¢ (¢). Using
(A.3) and noting that

/ [ ds) Y N 1 B
(8 (’)"”“”—/,w—m P(t)dt = LJW 5 dr=—0'0),
we obtain
dé(r) , ,
<g<r)7, ¢(t)> = (g(0)8' (1), (1))  — (g (0)8(t), p(1)). (A.6)

It is a very common abuse of notation to ‘drop’ the (-, -) brackets, along with ¢ (¢), and write
(A.6) simply as

g8 (t) = g(0)8'(r) — g (0)3(2). (A7)
In particular, if we let g(z) = ¢ in (A.4), then (A.7) yields t8'(t) = —&(¢), not just zero as
one might have naively expected. An alert reader may have noted that in the derivation of
3 Strictly speaking, this is an abuse of terminology but it is so common that one must be aware of it. Moreover, one

often speaks of generalized functions (distributions) as if they were proper functions, e.g., the Dirac delta function
8(1).
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(A.7), we never used the assumption that g(¢) is a polynomial; all that the derivation required
was g(t)¢(t) € S. While it is definitely true that g(t)¢(r) € S when g(¢) is a polynomial,
requiring g(¢) to be a polynomial is an unnecessary restriction. In other words, (A.7) holds for
any function g(¢) as long as g(¢)¢(¢) € S. For example, g(¢) could be sin(z), but it cannot be
exp (t“) because then g(z)¢ () ¢ S and the integrated terms will not vanish. We considered
this example in such detail because we will have numerous opportunities to use (A.7) in
appendix A.2.

A.1. The Fourier transform of tempered distributions

The key idea in generalizing the notation of a derivative is to move the derivative from a
function (generalized function) onto a set of ‘good’ functions, namely ¢ (¢) € S. Moreover, we
saw that by integrating by parts enough times, every (generalized) function had a derivative,
because the space S is composed of classically infinitely differentiable functions. We will use
this ‘moving idea’ (adjoint operator) to define the Fourier transform of a tempered distribution
f@). By the Fourier transform of f(¢) € ', denoted by f(w) or by F [f(z)], we mean

(FLfF O], ¢p(w)) = (f @), Flp(@)]), (A.8)
where

(f@®), Flo@)]) =/ f@ (/ ¢ (@) e dw) dr. (A9)
By the inverse Fourier transform of f(a)), denoted by F~! [f(a))], we mean

(FUT@)].0) = (f@). F g0, (A.10)
where

~ ~ oo 1 oo .

(f(w), F o)) = f f(w) (E/ o) e dt) do. (A.11)

By changing the order of integration in (A.9) and (A.11), we see that (A.9) and (A.11) are
indeed consistent with the classical Fourier transform pair. The underlining reason for defining
the Fourier transform pair by (A.8) and (A.10) lies in the fact that if ¢ € S, then ¢ is also in
S; the converse is also true. Moreover, it can be shown that f € S if and only if f € §'. For
a proof of these and related matters, see [21, chapter 3], [24, chapter 6], [25, chapter 7] and
[26, chapter 2]. Now, we will make (A.8)—(A.11) more concrete by considering a few simple
examples.

For our first example, we will compute the generalized Fourier transform of §(t), i.e.
(FI8()], ¢(w)). Substituting 4 (¢) into (A.9) and changing the order of integration yields

/OO ) (/Oo §(t) etier dt) do = /OC ¢ (w)dw = (1, p(w)). (A.12)

Thus, we see that F [§(¢)] = 1. Moreover, by taking the inverse Fourier transform, we obtain
the famous integral representation of the Dirac delta function, namely

1 [ _
() = —/ e dw. (A.13)
27 J_so

It is worth stressing that (A.13) should be interpreted in a distribution sense and, strictly
speaking, writing (A.13) as we did is an abuse of notation. However, such abuses of notation
are very common in physics, e.g., see the famous graduate electrodynamics textbook [27].
_As another simple example, consider the generalized inverse Fourier transform of
278(w — wy), where wy is a real number, i.e. (F~' [278(w — wo)], ¢ (1)) when wy € R.
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Substituting 27 5(@ —wyp) into (A.11) and then changing the order of integration and integrating
over w yields

f (1) e dr = (e7' $(1)). (A.14)

Thus, we see that F~! [g(a) - a)o)] = exp(—iwpt).
For our last example, let us compute the Fourier transform of the nth generalized derivative
of f(¢) € §'. From (A.8), we have

dar 0 d" ~
<]—" [@f(r)] ,¢><w)> = f_ N (@f(t)> P(t)dr. (A.15)

Performing integration by parts n-times on the right-hand side (where the integrated terms
vanished because ¢ € §) yields

o] dn ~ o0
(—1)"/ f@®) (@450)) dr = (—1)"/ FOF[(+iw)" P (w)] dt

= / FIfO1(—iw)"¢(») do, (A.16)

where we obtained (A.16) by using the definition (A.8). Finally, comparing (A.16) with the
left-hand side of (A.15) yields

d}’l
F [@f(t)] = (—iw)" F[fD)]. (A.17)

Note that in this example, we have used the definition (A.8) twice; Strichartz [21, pp 49-50]
appropriately refers to this as ‘definition chasing’.

No discussion of the Fourier transform of tempered distributions would be complete
without the Fourier transform of a convolution integral. For our purposes, it will be sufficient
to only consider convolution of the tempered distribution f with a fixed element ¥ from the
space of ‘good’ functions. Let f € §" and ¢/ € S; then, by the convolution of f with v, denoted
by (f = ¥) (t), we mean

(f*v)(®) =f f =)y @) dr. (A.18)

By a simple change of variables, we see that convolution is commutative, i.e. (f * ¥ )(t) =
(¥ * f)(t). Convolution defines an infinitely differentiable function and thus can be viewed
as a ‘smoothing’ process. To see this, let 2(t) = (f * ¥)(¢) and then

d)’l dl‘l oo dVl , , ,
g = Sl 0] = [_Oo <@f(f —t )) Y () de (A.19)

n oo n
= %[(w * f) ()] = [ (d—nw - f)) faHdr. (A.20)
t oo \ df
From (A.20), we conclude that all derivatives of h(r) exist in the classical sense because
Y € S, and from (A.19), we see that it does not matter how ‘rough’ (e.g., 8’(¢) is ‘rougher’
than &(¢)) is the distribution. In passing, we note another useful property of (A.18), namely
that its Fourier transform corresponds to multiplication in the Fourier domain:

(FLW * HO p(@) = (T (@) [ (). p(@)). (A2D)
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A.2. Support and structure of tempered distributions

We often want to speak about the local properties of distributions as if the distributions were
ordinary (classical) functions. When speaking about an ordinary function f(¢), the statement
‘f(t) has a value of f(f;) when ¢ = #;” has meaning, but the statement is nonsense if f(z)
is a distribution*. However, we can identify a set of points where distribution f is non-zero.
Loosely speaking, this set of points is known as the support of f. The formal definition of
support requires us to define where a distribution f is zero. We say a distribution f(¢) is zero,
f(t) =0, on an open interval (a, b) if (f(t), ¥ (t)) = 0 for every infinitely differentiable test
function v (¢) that vanishes in a neighbourhood of every point not in the (a, b) interval. For
example, if f(r) = 0 on (—1, 1), then ¥ (¢) vanishes outside the (—1 + €, 1 — €) interval
for some ¢ > 0. We now formally define the support of a distribution f(z), denoted by
supp [f(¢)], as the complement of the set of points ¢ such that f(¢) = 0 in a neighbourhood
of t. For example, if f(t) = 0 on (—00, 00), then supp [f(¢)] is the empty set and, as a less
trivial example, supp [6(#)] = {0}. Moreover, we will show that

dl’l
supp [@60)] = {0}. (A.22)

Consider any open interval /; that does not contain the point ¢ = 0; then,
¢ 8 IDRT ¢ " ¢ 0)=0
<dt" ), 1//(1)> = (=D < ), dtnl/f(t)> =D dlnl/f( ) =

because ¥ (¢) vanishes in a neighbourhood of t = 0. Of course, for any open interval I, that
does contain the point ¢+ = 0, the derivatives of i do not vanish at the point + = 0 for every
test function 1. Thus, we see that all derivatives of §(¢) have the same point support.

The above discussion was necessary to understand the following ‘structure’ theorem. A
tempered distribution f(¢) with supp [f(¢)] = {fo} must be of the form [21, pp 82-8]

N
f@) = 2:; en 8 = 10), (A23)
where the coefficients ¢,—¢, . are the complex numbers, i.e. ¢, € C forn = 0,...,N. In
other words, any tempered distribution with a point support may be expressed as a finite
linear combination of the Dirac function and its derivatives; this is a powerful statement! In
the next paragraph, we will show how we can use (A.23) to solve ‘algebraic’ equations in
a distributional sense. These types of equations are frequently encountered when we solve
differential equations by the Fourier transform technique.
As our first example, consider the following equation:

((t =10) (), p(1)) = (1. (1)), (A.24)

for all ¢(¢) € S. Before we find the unknown tempered distribution f(¢), we note that it is
customary to abuse the notation and write (A.24) simply as

t—1)f@t)=1. (A.25)

Naively, we might expect that
h) = (A26)

t—1

would solve (A.25), but this is only the particular part of the solution. We could have a
tempered distribution f;, (t) with supp [ f1(¢)] = {#o}, such that (r —#y) fi () = 0, and therefore,
f@) = fo() + fu() would also satisfy (A.25). We refer to f,(¢) as the homogeneous solution

4 Recall that we have defined distributions only by their action on the space of test functions.
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and, in light of the structure theorem in the previous paragraph, we know it must be of the
form
N
fult) = Z_;cnﬁa(t — 1o). (A.27)

Substituting (A.27) into ((r — #9) fu(?), ¢ ()) = (0, ¢(¢)) and integrating by parts until the
derivatives only appear on ¢ yields

—c10p(to) + 2029 (fg) — 339" (1) + -+ + (=1)"Newdp ¥V (19) = 0.
The above equation must hold for all ¢ € S. Thus, the coefficients must vanish independently,

ie.c, =0forn=1,2,..., N. Therefore, the homogeneous solution is given by
@) = codt — 1), (A.28)
and the full solution to (A.25) (or more formally, to (A.24)) is given by
1
f@) = P + cod(t — o). (A.29)
— I

Loosely speaking, from (A.29), we see that we can divide by zero, provided we add an
appropriate tempered distribution with a point support. In general, using the same procedure

as above, we can show that the distributional solution to (¢t —#y)" f(t) = 1 is given by
f@) = fo(t) + fu(r), where
0= (A.30)
T (t —to) |
fult) = cod(t —t0) +¢18'(t —to) + -+ + 18"Vt —1p). (A31)

For our second and last example, consider (in a distributional sense, of course) the following
equation:

(t—n)(—n)f@)=1, (A.32)
where t; # t,. From our previous example, we expect the solution to be of the form

N M
1
t)=————+Y b8 —t))+ Y cud™t—1). (A33)
e Y2rs) g; 1 mZ::; ’
Substituting (A.33) into (A.32) (of course, we actually mean ((t — ;) (t — 1) f(t), p()) =
(1, ¢(1)), for all ¢ € S) and integrating by parts until the derivatives only appear on ¢ yields

N
D (=D buln(n — D" P (1) + n(ty — )¢ (1)]

n=I

M
+ ) (=D)"eulmim — D" (1) — m(t —12)p" V()] = 0. (A34)
m=1
From (A.34), we see that b, =0 forn=1,...,Nandc, =0form =1, ..., M. Therefore,
the full solution to (A.32) is given by f(t) = f,(t) + fu(¢), where

1
hO= ey

Jo(®) = bod(t —11) + cod(t — 1p). (A.36)
Note that if ¢ = 1,, then (A.36) does not yield the correct solution, which is given by (A.31)
(withn = 2 and t; = t, — tp). The reason for this ‘discrepancy’ is because our conclusion
from (A.34), namely that b,—; y = 0 and c¢,—;,._» = 0, is not valid if t;, = #,. In other
words, we must be very careful when dealing with distributional solutions in limiting cases
such as, — ;. In the body of the paper, these limiting cases arise when we consider vanishing
absorption.

(A.35)

.....
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