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In this paper, we analyze a monochromatic plane wave scattering from an infinite
homogeneous cylindrical annulus. In particular, we study the effect that the inner part of
the cylindrical annulus (cylindrical void, if you will) has on the scattered field. This is
done by isolating the cylindrical void’s contribution to the scattered field. We show that
if the cylindrical void is small, then its contribution to the scattered field may be
approximated by the “screened cylindrical void” (SCV) approximation. We first develop
the SCV approximation in a physically intuitive manner, and then show that it could also
be obtained in a more mathematically rigorous manner. Numerical results comparing the
SCV approximation to the exact solution are also presented.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Consider a monochromatic plane wave scattering from an
infinitely long homogeneous and isotropic cylindrical annu-
lus with outer radius ry and inner radius r», see Fig. 1a. Let ¢;
denote the permittivity of the space surrounding the cylind-
rical annulus and let ¢, denote the permittivity of the
cylindrical annulus itself, r, < r < ry. Let us refer to the region
of space inside the cylindrical annulus as the “cylindrical
void” and ask what effect the cylindrical void has on the
scattered field(s) outside the cylindrical annulus. If one
were to experimentally investigate this, one would do the
following:

(a) measure the total field VV(r,0) outside the cylindrical
annulus (r>rq);
(b) measure the total field UV (r,0) outside an identical

* Corresponding author. Tel.: +1 720 933 0654.
E-mail addresses: ayuffa@gmail.com, ayuffa@mines.edu (A.J. Yuffa).
URL: http://mesoscopic.mines.edu (J.A. Scales).

0022-4073/$ - see front matter © 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.jqsrt.2013.02.017

“host cylinder;” i.e, a cylinder of radius r; and
permittivity ¢, as illustrated in Fig. 1b;

(c) compute the difference between the two fields in (a)
and (b):

W(sca)(r,(_)) — V(])(r,Q)—UH)(r,Q) (1)

Following the above procedure, W®(r,0) contains the
effect that the cylindrical void had on the scattered field.
In this paper, we show that W (r.0) can be approxi-
mated by the scattered field produced by the cylindrical
void when a plane wave from a region of space with a
permittivity of ¢, is incident on it. This approximation
holds if the “screening effect” (discussed in Section 2) of
the cylindrical annulus is properly accounted for, and if
the cylindrical void is sufficiently small. We refer to this
approximation as the screened cylindrical void (SCV)
approximation. Furthermore, we investigate the rate,
denoted by W, at which the energy is extinguished
(depleted) by the cylindrical void from the total field
outside, UV (r,0), the host cylinder.

To the best of our knowledge, the SCV approximation
and its physical interpretation (see Section 2) has not been
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Fig. 1. The cross-sectional view of the cylindrical scattering objects is shown. The origin of the coordinate system (r,0), where —7 < 0 < 7, is concentric
with the cylindrical objects. In each panel, the region is denoted by a boxed number and the permittivity of each region is also indicated. For example,
region three, r <r,, in panel (a) has a permittivity of ¢; and region one, r >y, in panel (c) has a permittivity of ¢;.

previously considered in the literature. In order to make
the paper accessible to the widest possible scientific
community, we use the well-known Lorenz-Mie theory
[1-4] to derive the SCV approximation. However, we do
note that our intuitive derivation of the SCV approxima-
tion, which is presented in Section 2, is physically guided by
the Debye series expansion [5]. In short, the Debye series
expansion consists of re-expressing each Mie scattering
coefficient in terms of an infinite series called the Debye
series. Each term in the Debye series may be physically
interpreted in terms of the number of reverberations the
wave has experienced. A reader interested in the use of the
Debye series expansion in the context related to this paper,
namely, plane wave scattering by a multilayered cylinder,
may consult [6,7] and references therein.

Although we do not explicitly consider many diverse
areas of science where the scattering by a cylindrical void
is important (e.g., see [3,4]), we would like to mention one,
namely, localization. Fifty years after the publication of
Anderson’s seminal work [8], localization continues to be a
thriving area of research [9] in theoretical and experimental
physics. Localization of millimeter/submillimeter electromag-
netic waves is particularly interesting because both the
amplitude and the phase of the electromagnetic field can
be easily measured with a vector network analyzer [10].
At these wavelengths, the preparation of disordered samples
is also inexpensive and straightforward with standard
computer-numerically-controlled (CNC) milling techniques.
A sample may be prepared by drilling small holes in a large
Teflon (ultra low-loss material) cylinder. Further, by illumi-
nating the sample from the side and putting it on a rotational
stage, we can generate essentially arbitrary realizations of the
same random disorder. When the number of small scatterers
is large, say, over 1000, then what is important is the rate at
which the scatterer extinguishes the energy from the incident
field, rather than the geometrical shape/size of each indivi-
dual scatterer [11,12]. Thus, the physical insight into scatter-
ing by a single small cylindrical void discussed in this paper
may be of benefit in understanding the experimental model
described above.

Throughout this paper, we will use the Gaussian unit
system, and we will assume that all fields are harmonic in
time with a exp(—iwt) time factor, where w is the angular

frequency. Furthermore, we will assume that all fields are
polarized in the positive Z-direction. The positive Z-direction
is out of the page in Fig. 1. All media considered in this paper
are assumed to be non-magnetic, and ¢; is assumed to be
purely real.

2. Intuitive derivation of the SCV approximation

In this section, a physically intuitive derivation of the
SCV approximation is presented. The derivation is orga-
nized as follows. First, we imagine a unit plane wave
u@™9(r Q) incident from region one onto the cylindrical
void shown in Fig. 1c. Then, we compute the scattered
field u“(r,0) in region one generated by the scattering of
u9(r,0) from the cylindrical void. Second, to account for
the screening effect of the cylindrical annulus, we use the
previously found scattered field u®d(r,0) as the incident
(primary) field, i.e., w9 (r,0) = us@(r,0), originating from
the center of the host cylinder shown in Fig. 1b. Finally,
we compute the total field w(r,0) in region one shown in
Fig. 1b and physically interpret the terms contained in it
to obtain an approximation to W (r,0), see (1).

Let us note that all fields in this paper satisfy the two-
dimensional (2D) Helmholtz equation. The radial solution
of the 2D Helmholtz equation is composed of a linear
combination of integer order Bessel functions of the first
and second kind, which we denote by J,(¢) and Y,(&),
respectively. The Bessel functions J,(¢) and Y,(¢) also
satisfy the Wronskian relationship [13], namely
2
n_i.

Also, J,(&), Ya(¢) and the Hankel function of the first kind,
which we denote by Hp(&)=],(&)+iYn(&), satisfy the
recurrence relation [13]

Jne1OYn(O)—T1(OYn1(O) = (2a)

d .. n
d—gq’n(;)= Z‘Pn(f)—‘l’nﬂ(f). (2b)

where ¥ denotes J, Y or H. Lastly, we note the
Jacobi-Anger expansion of a plane wave [13], namely,

€€t = 3" g,i", () cosno), @9
n=0
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where g, denotes the Neumann factor: g, =1 and g,=2
forn>1.

Returning to the scattering of the unit plane wave from
the cylindrical void shown in Fig. 1c, let the incident wave
be u9(r,0) = exp(ikyr cos 0), where k, = /& w/c is the
wavenumber and c is the speed of light in a vacuum. Then,
the field in region two u®(r,0), and the total field in
region one decomposed as uV(r,0) = u(r,0) 4+ uA(r,0),
may be written as

uto(r,0) . Jn(kar)
usA(r,0) | = > gyi" | dnHu(kar) | cos(nd), 3)
udr,0) | n=0 PnJn(k1T)

where k; = ,/¢iw/c. In writing (3), we used the Jacobi-
Anger expansion (2c) to rewrite exp(ikyr cos 6) as an
infinite sum, imposed the Sommerfeld radiation (outgoing
cylindrical wave) condition on u®®(r,0), and required
u®@(r,0) to be regular (finite) at r=0. To find the unknown
coefficients in (3), we require that the electric field and its
normal derivative be continuous across the r=r, inter-
face, i.e.,

0 0
M _— @) a1 _ (2) — 4
u’=u and u = u onr=ry,

or or 2 “

to obtain a system of linear equations. Solving this system
of linear equations for ¢, and using (2b) to simplify the
result, yields

Oy = — Jnp1(kir2)]p(kara)—ic] (ki) 4 1 (Kar2)

, 5
Jny1(kir)Hn(kor2) K], (k11m2)Hp 11 (ka132) (53

where Kk =ky/ki,ne Z" and Z" denotes the set of all
nonnegative integers. It is convenient to introduce curly
bracket notation, {¥,,1(£), (1)}, by which we mean

{ l[/n+1(§),(bn(r])} = (Y41 O)Pu(—KWVn(O)Pnr1(1).
For example, (5a) in the curly bracket notation reads as

{n 1tk Jn(kar2)}

5n = »
{Jny1(ki12),Hu(kar2) }

eZ". (5b)

Having found the expansion coefficients of the scattered
wave u®(r,0), we are now ready to see how they should
be modified in order to account for the screening effect of
the cylindrical annulus.

Imagine a “line-source” embedded in the center of the
host cylinder shown in Fig. 1b. We take the field produced
by the line-source to be equal to u¥(r,0) in (3). If we use
this field as the incident field, i.e., w9 (r,0) = uc(r,0),
then the total field w®(r,0) inside the host cylinder
(region two in Fig. 1b) may be written as w@®(r,0) =
w9, 0) + w2 (r,0), where

WD, ) = i &ni" B n(kar) cOS(NO). (6a)
n=0

Notice that in (6a), we required w@(r,0) to be regular at
r=0. This requirement is necessary because we are
essentially treating the cylindrical void as a line-source
in this paragraph. The field outside the host cylinder
(region one in Fig. 1b), w(r,0), must satisfy the

Sommerfeld radiation condition and thus, it is given by

w(r,0) =

n=

gni" o Hp (k1) cos(no). (6b)
0

Imposing the boundary conditions w¥ =w® and (8/ar)
w = (8/6r)w? on r =ry, then solving the resultant linear
system for o, and using (2a) with (2b) to simplify the
result yields

—2i . 4

o= <7fk1"1 {Hn+1(]<1T1)Jn(k2"1)}>bn' nel. @
We physically interpret the term in parentheses in (7) as
the screening effect of the cylindrical annulus on the
scattered wave generated by the cylindrical void. The «,
coefficients are not quite the correct ones to use in
WO (1 0) because they do not contain the screening
effect that the cylindrical annulus had on the incident
wave. A moment’s thought reveals that this screening
effect had to be the same as the screening effect on the
scattered wave. Thus, the W@ (r,0) expansion coeffi-
cients should be given by (7) with the parenthesis term
squared. Therefore, W (r,0) is approximately given by

2
>, . —2i
WeD(r,0) ~ i
"0 n;)gn <7Tk1?’1{Hn+1(k1r1)Jn(k2r1)}>
x OnHp(ky1) cos(n0), ®)

where the o, coefficients are given by (5).
3. Rigorous derivation of the SCV approximation

In this section, we present a rigorous derivation of
W6 r,0) by directly computing UV (r,0) and VV(r,0)
(recall the bullet list of Section 1). Once the exact
WO 0) is found, we show that it is approximately
equal to (8) if kyrp <1 and |k;|r, < 1. Furthermore, a
numerical illustration of the SCV approximation is also
presented.

If a plane wave, UTM(r,0) = exp(ik 1 cos 0), is incident
on the host cylinder shown in Fig. 1b, then by proceeding
as in paragraph three of Section 2, the total field in region
one is UV(r,0) = UM (r,0) + U (r,0), where the scattered
field is

USD(r,0)= Y g,i"ATHa(ky1) cos(nd) (9a)
n=20

with

Ao _ Jnp1tar)Jatkore)} ez 9b)

{Hpa(kir)Jplkor) Y

and the field in region two is given by

00
UPr,0)= " g,i"ByJ,(kar) cos(no). (90)
n=20
The superscript (hc) on the expansion coefficients in (9) is
meant to remind the reader that these expansion coeffi-
cients are for the host cylinder.

Turning our attention to the cylindrical annulus shown
in Fig. 1a, if we think of the cylindrical annulus as the host
cylinder into which a scatterer, namely, the cylindrical
void, has been inserted, then, the total fields in regions
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one, two, and three may be written as VV(r,0)=
UV r,0)+Wedr,0), VOa,0)=U21,00+W2r,0) and
V(r,0) = W(r,0), respectively. Noting that the W-fields
also satisfy the 2D Helmholtz equation and imposing the
Sommerfeld radiation condition on W (r,0), as well as
requiring W®(r,0) to be regular at r=0 yields

WD r,0) - A Hy(kq1)
w0y | = gi" | B y(kar)+C Y n(kar) | cos(n0).
w0 | =0 D], (ke )

(10

The superscript (cv) on the expansion coefficients in (10)
reminds us of the presence of the cylindrical void.
To find the unknown coefficients in (10), we require that
the V-fields and their normal derivatives be continuous
across the r =ry interface, as well as the r = r, interface to
obtain

—Hu(kiry)  Ju(kary)  Ya(kary) 0 A
—Hj(kir1) 1y (kar1)  KY)(kar) 0 B
0 Jalkara)  Ya(kora)  —Ju(kir2) | | CIV)
0 Klu(kara) kY (ko)  —Ju(kir2) | | pev

=M

Ju(kir1) +APOHy (ki71) B3, (kar1)
Jokir)+APOH, (ki) — B3OS (kor)
7B£1hc)_]n (kz Tz)

—kBPOJ (k1)

) an

and the prime denotes the derivative with respect to the
argument. Solving (11) for A" and using (2b) to simplify
the result, yields

detMDAT” = —{J 1 (kir2)Ja(kar2) }
* (AT {Hy 4 1(k111), Ya(kor)}
+{Inp1kir), Yn(kar)}), (12a)
where
det(M) = {Hp+1(k171), Yn(kar1) } {J 4 1(k172)Jn(k212) }

—{Hnp1(kir)Jp(kar) }{Jn s 1(k172), Ya(kar2) }.
(12b)

To simplify (12a) further, we use (9b) and note that
{Yniatkare), Ynlkar) }{Jny 1 (kar) (k) }

2
—{Yn+1(k1"1)Jn(k2r1)}{]n+1(k1r1).Yn(k2T1)}=( 2 )

7Tk] 1

to obtain

@ _ i < 2 >2 {ns1kir2)Ju(kara) }
" det(M) \mtkir1) {Hn1(kir)Jn(kar)}’

nez". (13)

40

30

magnitude
o
)
(=)
phase (deg.)

20
— exact

- -~ approx.

0.0 0.2 0.4 0.6 0.8 1.0
kQTZ

Fig. 2. The magnitude and phase of the far-field pattern in the forward
direction for a Teflon cylindrical annulus in vacuum, with an outer
radius of 10 cm at 100 GHz, is shown. The permittivity of Teflon at
100 GHz is 2.05 with a negligible loss-tangent [10]. In the computation
of (16), we only summed the first N=[kir,+4(kir;)">+2] terms
[3, Appendix C].

The A/ coefficients in (13) are the exact expansion
coefficients of WC®@(r,0). To obtain the approximate
coefficients, we first note that Y,(kyry)~ —iHp(kary)) if
|k2|r2 < 1 [13], which allows us to rewrite (13) as

A“‘”;i( 2 )2 1
" ntkir1) {Hpy1(kiry)J,(kore)}

On
* <{Hn+l(klrl)vyn(kzrl)}én_i{Hn+l(klrl)vjn(kzrl)}>'
(14)

where ¢, is given by (5). To develop (14) further, we note
that |6, < 1if kyr, <1 and |k, |r; <1, as can be seen from
the small argument forms of J,(¢) and Hp(¢) [13]. There-
fore, we can expand (14) in powers of ¢, to finally obtain

2
2i
@) A Op, NeZ™. 15
" <7T]<1r1{Hn+l(k1r1)']n(k2rl)}> o ) w

Notice that the above A" coefficients are identical to the
expansion coefficients given in (8) of Section 2.

To numerically illustrate the SCV approximation, the
far-field pattern of W®?¥(r,0) in the forward direction,
0 =0, as a function of k,r, is shown in Fig. 2. The far-field
pattern of WS(r,0) is defined by

F(0)=— i 2, A% cos(no). (16)
n=0

From Fig. 2, we see that the exact (computed with (13))
and the approximate (computed with (15)) far-field
patterns are in good agreement for small kyry, say,
kory < 0.3. Also from Fig. 2, we see that the SCV approx-
imation becomes progressively worse as kor, approaches
unity. This is expected as the SCV approximation requires
that both kir, and k,r, are much smaller than unity.
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4. Energy conservation

In this section, we present a relationship between the
rate at which the energy is extinguished by the cylindrical
void from the UV (r,0) field. Also, a numerical example
illustrating that the SCV approximation is in good agree-
ment with the derived energy conservation relationship is
presented.

We begin by constructing an imaginary concentric
cylinder of radius R>r; and length L around the host
cylinder shown in Fig. 1b. Then, the rate W at which
the energy is absorbed within the imaginary concentric
cylinder is given by

T
W _ R / Sy - do, (17a)
-7

where t=cos0X+sinfy (see Fig. 1), and the time-
averaged Poynting vector is given by

1
SU: iRe|:

e g gmy
e UMY )] (17b)
In (17b), Re denotes the real part, * denotes the complex
conjugate, and k= w/c. Now, we consider the rate Wﬁ}*bs’
at which the energy is absorbed by the cylindrical annulus.
By proceeding as before, we immediately obtain
o 1 .

WS = _RL | Sv-ido. whereSy=;Re %V‘”V(V“’)* . (18)
Substituting V"V = UV + W into (18) and using (17) to
simplify the result yields

Wext _ W{/abs)iw(i]abs) + W{/s{/ca), (193)
where
We = 7% " Re[ilUNV (W) Liws@v(UD)*) i o (19b)
and
wie = B[ pe[iweeny (wise)*) ¢ o (19¢
W= 8k rde )
-7

We interpret W' as the rate at which the energy is
extinguished by a scatterer, namely, the cylindrical void,
in the presence of the host cylinder. In other words, it is
the rate at which the energy is depleted by the cylindrical
void from the total field, U, outside the host cylinder.
Moreover, from (19) we see that if the cylindrical annulus
is nonabsorbing (¢, is purely real), then W' =W,
Finally, substituting U (r,0) and W®(r,0) (see (9a) and
(10)) into (19b), and then integrating the result over 6
yields

W= - LE S g (Re[AS] 4 2Re AV (AP)']). @0)

n=0

We interpret the first term in (20) as the rate at which
WE extinguishes energy from UM, and the second
term as the rate at which W@ extinguishes energy from
U(SCH).

To illustrate that the SCV approximation is in good
agreement with the energy conservation principle, we
compute W' using the exact and approximate A®
coefficients. Recall that the exact A" coefficients are
given by (13), and the approximate coefficients by (15).

160

140 ¢

Ju—

[}

S
T

—_

(=3

S
T

60 0.0

40 +

normalized WY (m)

20 exact
- -~ approx.
0 - ) ) - J
0.0 0.2 0.4 0.6 0.8 1.0

kara

Fig. 3. The rate W®' (normalized by Lc/8m) at which energy is
extinguished by the cylindrical void from the total field outside the
host cylinder is shown as a function of k,r,. The above plot was
produced with the same parameters as the ones described in the caption
of Fig. 2.

The results of the above-mentioned computations are
shown in Fig. 3. From Fig. 3, we see that the SCV approx-
imation conserves energy to roughly 10% for k,ry <1,
which does indicate that the SCV approximation is in
good agreement with the energy conservation principle.

5. Conclusions

In this paper, we investigated a monochromatic plane
wave scattering from a solid homogeneous cylinder (host
cylinder) and a cylindrical annulus, referring to the inner part
of the cylindrical annulus as the cylindrical void. It was
shown that if the cylindrical void is thought of as a scatterer
inserted into the host cylinder, then the scattered field due to
the cylindrical void may be approximated by the screened
cylindrical void (SCV) approximation, see Section 2. The SCV
approximation was derived intuitively in Section 2 and
rigorously in Section 3. Furthermore, a formula for the rate
at which energy is depleted by the cylindrical void from the
total field outside the host cylinder was derived in Section 4.
The numerical examples in Sections 3 and 4 showed that the
SCV approximation is in good agreement with the exact
solution if the cylindrical void is small.
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