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a b s t r a c t

In this paper, we analyze a monochromatic plane wave scattering from an infinite

homogeneous cylindrical annulus. In particular, we study the effect that the inner part of

the cylindrical annulus (cylindrical void, if you will) has on the scattered field. This is

done by isolating the cylindrical void’s contribution to the scattered field. We show that

if the cylindrical void is small, then its contribution to the scattered field may be

approximated by the ‘‘screened cylindrical void’’ (SCV) approximation. We first develop

the SCV approximation in a physically intuitive manner, and then show that it could also

be obtained in a more mathematically rigorous manner. Numerical results comparing the

SCV approximation to the exact solution are also presented.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Consider a monochromatic plane wave scattering from an
infinitely long homogeneous and isotropic cylindrical annu-
lus with outer radius r1 and inner radius r2, see Fig. 1a. Let E1

denote the permittivity of the space surrounding the cylind-
rical annulus and let E2 denote the permittivity of the
cylindrical annulus itself, r2oror1. Let us refer to the region
of space inside the cylindrical annulus as the ‘‘cylindrical
void’’ and ask what effect the cylindrical void has on the
scattered field(s) outside the cylindrical annulus. If one
were to experimentally investigate this, one would do the
following:
(a)
 measure the total field V ð1Þðr,yÞ outside the cylindrical
annulus (r4r1);
(b)
 measure the total field Uð1Þðr,yÞ outside an identical
All rights reserved.

nes.edu (A.J. Yuffa).
‘‘host cylinder;’’ i.e., a cylinder of radius r1 and
permittivity E2, as illustrated in Fig. 1b;
(c)
 compute the difference between the two fields in (a)
and (b):

W ðscaÞ
ðr,yÞ ¼ V ð1Þðr,yÞ�Uð1Þðr,yÞ: ð1Þ
Following the above procedure, W ðscaÞ
ðr,yÞ contains the

effect that the cylindrical void had on the scattered field.
In this paper, we show that W ðscaÞ

ðr,yÞ can be approxi-
mated by the scattered field produced by the cylindrical
void when a plane wave from a region of space with a
permittivity of E2 is incident on it. This approximation
holds if the ‘‘screening effect’’ (discussed in Section 2) of
the cylindrical annulus is properly accounted for, and if
the cylindrical void is sufficiently small. We refer to this
approximation as the screened cylindrical void (SCV)
approximation. Furthermore, we investigate the rate,
denoted by Wext, at which the energy is extinguished
(depleted) by the cylindrical void from the total field
outside, Uð1Þðr,yÞ, the host cylinder.

To the best of our knowledge, the SCV approximation
and its physical interpretation (see Section 2) has not been
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Fig. 1. The cross-sectional view of the cylindrical scattering objects is shown. The origin of the coordinate system ðr,yÞ, where �pryop, is concentric

with the cylindrical objects. In each panel, the region is denoted by a boxed number and the permittivity of each region is also indicated. For example,

region three, ror2, in panel (a) has a permittivity of E1 and region one, r4r2, in panel (c) has a permittivity of E2.
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previously considered in the literature. In order to make
the paper accessible to the widest possible scientific
community, we use the well-known Lorenz–Mie theory
[1–4] to derive the SCV approximation. However, we do
note that our intuitive derivation of the SCV approxima-
tion, which is presented in Section 2, is physically guided by
the Debye series expansion [5]. In short, the Debye series
expansion consists of re-expressing each Mie scattering
coefficient in terms of an infinite series called the Debye
series. Each term in the Debye series may be physically
interpreted in terms of the number of reverberations the
wave has experienced. A reader interested in the use of the
Debye series expansion in the context related to this paper,
namely, plane wave scattering by a multilayered cylinder,
may consult [6,7] and references therein.

Although we do not explicitly consider many diverse
areas of science where the scattering by a cylindrical void
is important (e.g., see [3,4]), we would like to mention one,
namely, localization. Fifty years after the publication of
Anderson’s seminal work [8], localization continues to be a
thriving area of research [9] in theoretical and experimental
physics. Localization of millimeter/submillimeter electromag-
netic waves is particularly interesting because both the
amplitude and the phase of the electromagnetic field can
be easily measured with a vector network analyzer [10].
At these wavelengths, the preparation of disordered samples
is also inexpensive and straightforward with standard
computer-numerically-controlled (CNC) milling techniques.
A sample may be prepared by drilling small holes in a large
Teflon (ultra low-loss material) cylinder. Further, by illumi-
nating the sample from the side and putting it on a rotational
stage, we can generate essentially arbitrary realizations of the
same random disorder. When the number of small scatterers
is large, say, over 1000, then what is important is the rate at
which the scatterer extinguishes the energy from the incident
field, rather than the geometrical shape/size of each indivi-
dual scatterer [11,12]. Thus, the physical insight into scatter-
ing by a single small cylindrical void discussed in this paper
may be of benefit in understanding the experimental model
described above.

Throughout this paper, we will use the Gaussian unit
system, and we will assume that all fields are harmonic in
time with a expð�iotÞ time factor, where o is the angular
frequency. Furthermore, we will assume that all fields are
polarized in the positive ẑ-direction. The positive ẑ-direction
is out of the page in Fig. 1. All media considered in this paper
are assumed to be non-magnetic, and E1 is assumed to be
purely real.

2. Intuitive derivation of the SCV approximation

In this section, a physically intuitive derivation of the
SCV approximation is presented. The derivation is orga-
nized as follows. First, we imagine a unit plane wave
uðincÞðr,yÞ incident from region one onto the cylindrical
void shown in Fig. 1c. Then, we compute the scattered
field uðscaÞðr,yÞ in region one generated by the scattering of
uðincÞðr,yÞ from the cylindrical void. Second, to account for
the screening effect of the cylindrical annulus, we use the
previously found scattered field uðscaÞðr,yÞ as the incident

(primary) field, i.e., wðincÞðr,yÞ � uðscaÞðr,yÞ, originating from
the center of the host cylinder shown in Fig. 1b. Finally,
we compute the total field wð1Þðr,yÞ in region one shown in
Fig. 1b and physically interpret the terms contained in it
to obtain an approximation to W ðscaÞ

ðr,yÞ, see (1).
Let us note that all fields in this paper satisfy the two-

dimensional (2D) Helmholtz equation. The radial solution
of the 2D Helmholtz equation is composed of a linear
combination of integer order Bessel functions of the first
and second kind, which we denote by JnðxÞ and YnðxÞ,
respectively. The Bessel functions JnðxÞ and YnðxÞ also
satisfy the Wronskian relationship [13], namely

Jnþ1ðxÞYnðxÞ�JnðxÞYnþ1ðxÞ ¼
2

px : ð2aÞ

Also, JnðxÞ, YnðxÞ and the Hankel function of the first kind,
which we denote by HnðxÞ ¼ JnðxÞþ iYnðxÞ, satisfy the
recurrence relation [13]

d

dx
CnðxÞ ¼

n

x
CnðxÞ�Cnþ1ðxÞ, ð2bÞ

where C denotes J, Y or H. Lastly, we note the
Jacobi–Anger expansion of a plane wave [13], namely,

eix cos y ¼
X1
n ¼ 0

gninJnðxÞ cosðnyÞ, ð2cÞ
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where gn denotes the Neumann factor: g0 ¼ 1 and gn¼2
for nZ1.

Returning to the scattering of the unit plane wave from
the cylindrical void shown in Fig. 1c, let the incident wave
be uðincÞðr,yÞ ¼ expðik2r cos yÞ, where k2 ¼

ffiffiffiffiffiE2
p o=c is the

wavenumber and c is the speed of light in a vacuum. Then,
the field in region two uð2Þðr,yÞ, and the total field in
region one decomposed as uð1Þðr,yÞ ¼ uðincÞðr,yÞþuðscaÞðr,yÞ,
may be written as

uðincÞðr,yÞ
uðscaÞðr,yÞ
uð2Þðr,yÞ

2
64

3
75¼ X1

n ¼ 0

gnin

Jnðk2rÞ

dnHnðk2rÞ

gnJnðk1rÞ

2
64

3
75cosðnyÞ, ð3Þ

where k1 ¼
ffiffiffiffiffiE1
p o=c. In writing (3), we used the Jacobi–

Anger expansion (2c) to rewrite expðik2r cos yÞ as an
infinite sum, imposed the Sommerfeld radiation (outgoing

cylindrical wave) condition on uðscaÞðr,yÞ, and required
uð2Þðr,yÞ to be regular (finite) at r¼0. To find the unknown
coefficients in (3), we require that the electric field and its
normal derivative be continuous across the r¼ r2 inter-
face, i.e.,

uð1Þ ¼ uð2Þ and
@

@r
uð1Þ ¼

@

@r
uð2Þ on r¼ r2, ð4Þ

to obtain a system of linear equations. Solving this system
of linear equations for dn and using (2b) to simplify the
result, yields

dn ¼�
Jnþ1ðk1r2ÞJnðk2r2Þ�kJnðk1r2ÞJnþ1ðk2r2Þ

Jnþ1ðk1r2ÞHnðk2r2Þ�kJnðk1r2ÞHnþ1ðk2r2Þ
, ð5aÞ

where k¼ k2=k1, n 2 Zþ and Zþ denotes the set of all
nonnegative integers. It is convenient to introduce curly
bracket notation, fCnþ1ðxÞ,FðZÞg, by which we mean

Cnþ1ðxÞ,FnðZÞ
� �

� ðCnþ1ðxÞFnðZÞ�kCnðxÞFnþ1ðZÞÞ:

For example, (5a) in the curly bracket notation reads as

dn ¼�
Jnþ1ðk1r2Þ,Jnðk2r2Þ
� �
Jnþ1ðk1r2Þ,Hnðk2r2Þ
� � , n 2 Zþ : ð5bÞ

Having found the expansion coefficients of the scattered
wave uðscaÞðr,yÞ, we are now ready to see how they should
be modified in order to account for the screening effect of
the cylindrical annulus.

Imagine a ‘‘line-source’’ embedded in the center of the
host cylinder shown in Fig. 1b. We take the field produced
by the line-source to be equal to uðscaÞðr,yÞ in (3). If we use
this field as the incident field, i.e., wðincÞðr,yÞ � uðscaÞðr,yÞ,
then the total field wð2Þðr,yÞ inside the host cylinder
(region two in Fig. 1b) may be written as wð2Þðr,yÞ ¼
wðincÞðr,yÞþwðscaÞðr,yÞ, where

wðscaÞðr,yÞ ¼
X1
n ¼ 0

gninbnJnðk2rÞ cosðnyÞ: ð6aÞ

Notice that in (6a), we required wðscaÞðr,yÞ to be regular at
r¼0. This requirement is necessary because we are
essentially treating the cylindrical void as a line-source
in this paragraph. The field outside the host cylinder
(region one in Fig. 1b), wð1Þðr,yÞ, must satisfy the
Sommerfeld radiation condition and thus, it is given by

wð1Þðr,yÞ ¼
X1
n ¼ 0

gninanHnðk1rÞ cosðnyÞ: ð6bÞ

Imposing the boundary conditions wð1Þ ¼wð2Þ and ð@=@rÞ

wð1Þ ¼ ð@=@rÞwð2Þ on r¼ r1, then solving the resultant linear
system for an and using (2a) with (2b) to simplify the
result yields

an ¼
�2i

pk1r1fHnþ1ðk1r1Þ,Jnðk2r1Þg

� �
dn, n 2 Zþ : ð7Þ

We physically interpret the term in parentheses in (7) as
the screening effect of the cylindrical annulus on the
scattered wave generated by the cylindrical void. The an

coefficients are not quite the correct ones to use in
W ðscaÞ

ðr,yÞ because they do not contain the screening
effect that the cylindrical annulus had on the incident

wave. A moment’s thought reveals that this screening
effect had to be the same as the screening effect on the
scattered wave. Thus, the W ðscaÞ

ðr,yÞ expansion coeffi-
cients should be given by (7) with the parenthesis term
squared. Therefore, W ðscaÞ

ðr,yÞ is approximately given by

W ðscaÞ
ðr,yÞffi

X1
n ¼ 0

gnin �2i

pk1r1 Hnþ1ðk1r1Þ,Jnðk2r1Þ
� � !2

�dnHnðk1rÞ cosðnyÞ, ð8Þ

where the dn coefficients are given by (5).

3. Rigorous derivation of the SCV approximation

In this section, we present a rigorous derivation of
W ðscaÞ

ðr,yÞ by directly computing Uð1Þðr,yÞ and V ð1Þðr,yÞ
(recall the bullet list of Section 1). Once the exact

W ðscaÞ
ðr,yÞ is found, we show that it is approximately

equal to (8) if k1r251 and 9k29r251. Furthermore, a
numerical illustration of the SCV approximation is also
presented.

If a plane wave, UðincÞ
ðr,yÞ ¼ expðik1r cos yÞ, is incident

on the host cylinder shown in Fig. 1b, then by proceeding
as in paragraph three of Section 2, the total field in region
one is Uð1Þðr,yÞ ¼UðincÞ

ðr,yÞþUðscaÞ
ðr,yÞ, where the scattered

field is

UðscaÞ
ðr,yÞ ¼

X1
n ¼ 0

gninAðhcÞ
n Hnðk1rÞ cosðnyÞ ð9aÞ

with

AðhcÞ
n ¼�

Jnþ1ðk1r1Þ,Jnðk2r1Þ
� �
Hnþ1ðk1r1Þ,Jnðk2r1Þ
� � , n 2 Zþ , ð9bÞ

and the field in region two is given by

Uð2Þðr,yÞ ¼
X1
n ¼ 0

gninBðhcÞ
n Jnðk2rÞ cosðnyÞ: ð9cÞ

The superscript ðhcÞ on the expansion coefficients in (9) is
meant to remind the reader that these expansion coeffi-
cients are for the host cylinder.

Turning our attention to the cylindrical annulus shown
in Fig. 1a, if we think of the cylindrical annulus as the host
cylinder into which a scatterer, namely, the cylindrical
void, has been inserted, then, the total fields in regions



Fig. 2. The magnitude and phase of the far-field pattern in the forward

direction for a Teflon cylindrical annulus in vacuum, with an outer

radius of 10 cm at 100 GHz, is shown. The permittivity of Teflon at

100 GHz is 2.05 with a negligible loss-tangent [10]. In the computation

of (16), we only summed the first N¼ dk1r2þ4ðk1r2Þ
1=3
þ2e terms

[3, Appendix C].
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one, two, and three may be written as V ð1Þðr,yÞ ¼
Uð1Þðr,yÞþW ðscaÞ

ðr,yÞ, V ð2Þðr,yÞ ¼Uð2Þðr,yÞþW ð2Þ
ðr,yÞ and

V ð3Þðr,yÞ ¼W ð3Þ
ðr,yÞ, respectively. Noting that the W-fields

also satisfy the 2D Helmholtz equation and imposing the
Sommerfeld radiation condition on W ðscaÞ

ðr,yÞ, as well as
requiring W ð3Þ

ðr,yÞ to be regular at r¼0 yields

W ðscaÞ
ðr,yÞ

W ð2Þ
ðr,yÞ

W ð3Þ
ðr,yÞ

2
64

3
75¼ X1

n ¼ 0

gnin

AðcvÞ
n Hnðk1rÞ

BðcvÞ
n Jnðk2rÞþCðcvÞ

n Ynðk2rÞ

DðcvÞ
n Jnðk1rÞ

2
664

3
775cosðnyÞ:

ð10Þ

The superscript ðcvÞ on the expansion coefficients in (10)
reminds us of the presence of the cylindrical void.
To find the unknown coefficients in (10), we require that
the V-fields and their normal derivatives be continuous
across the r¼ r1 interface, as well as the r¼ r2 interface to
obtain

�Hnðk1r1Þ Jnðk2r1Þ Ynðk2r1Þ 0

�H0nðk1r1Þ kJ0nðk2r1Þ kY 0nðk2r1Þ 0

0 Jnðk2r2Þ Ynðk2r2Þ �Jnðk1r2Þ

0 kJ0nðk2r2Þ kY 0nðk2r2Þ �J0nðk1r2Þ

2
66664

3
77775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼ M

AðcvÞ
n

BðcvÞ
n

CðcvÞ
n

DðcvÞ
n

2
666664

3
777775

¼

Jnðk1r1ÞþAðhcÞ
n Hnðk1r1Þ�BðhcÞ

n Jnðk2r1Þ

J0nðk1r1ÞþAðhcÞ
n H0nðk1r1Þ�kBðhcÞ

n J0nðk2r1Þ

�BðhcÞ
n Jnðk2r2Þ

�kBðhcÞ
n J0nðk2r2Þ

2
666664

3
777775, ð11Þ

and the prime denotes the derivative with respect to the
argument. Solving (11) for AðcvÞ

n and using (2b) to simplify
the result, yields

detðMÞAðcvÞ
n ¼� Jnþ1ðk1r2Þ,Jnðk2r2Þ

� �
�
�
AðhcÞ

n Hnþ1ðk1r1Þ,Ynðk2r1Þ
� �

þ Jnþ1ðk1r1Þ,Ynðk2r1Þ
� �	

, ð12aÞ

where

detðMÞ ¼ Hnþ1ðk1r1Þ,Ynðk2r1Þ
� �

Jnþ1ðk1r2Þ,Jnðk2r2Þ
� �

� Hnþ1ðk1r1Þ,Jnðk2r1Þ
� �

Jnþ1ðk1r2Þ,Ynðk2r2Þ
� �

:

ð12bÞ

To simplify (12a) further, we use (9b) and note that

Ynþ1ðk1r1Þ,Ynðk2r1Þ
� �

Jnþ1ðk1r1Þ,Jnðk2r1Þ
� �

� Ynþ1ðk1r1Þ,Jnðk2r1Þ
� �

Jnþ1ðk1r1Þ,Ynðk2r1Þ
� �

¼
2

pk1r1

� �2

to obtain

AðcvÞ
n ¼

i

detðMÞ

2

pk1r1

� �2 Jnþ1ðk1r2Þ,Jnðk2r2Þ
� �
Hnþ1ðk1r1Þ,Jnðk2r1Þ
� � , n 2 Zþ : ð13Þ
The AðcvÞ
n coefficients in (13) are the exact expansion

coefficients of W ðscaÞ
ðr,yÞ. To obtain the approximate

coefficients, we first note that Ynðk2r2Þ � �iHnðk2r2Þ) if
9k29r251 [13], which allows us to rewrite (13) as

AðcvÞ
n ffi i

2

pk1r1

� �2 1

Hnþ1ðk1r1Þ,Jnðk2r1Þ
� �

�
dn

Hnþ1ðk1r1Þ,Ynðk2r1Þ
� �

dn�i Hnþ1ðk1r1Þ,Jnðk2r1Þ
� � !

,

ð14Þ

where dn is given by (5). To develop (14) further, we note
that 9dn951 if k1r251 and 9k29r251, as can be seen from
the small argument forms of JnðxÞ and HnðxÞ [13]. There-
fore, we can expand (14) in powers of dn to finally obtain

AðcvÞ
n �

2i

pk1r1 Hnþ1ðk1r1Þ,Jnðk2r1Þ
� � !2

dn, n 2 Zþ : ð15Þ

Notice that the above AðcvÞ
n coefficients are identical to the

expansion coefficients given in (8) of Section 2.
To numerically illustrate the SCV approximation, the

far-field pattern of W ðscaÞ
ðr,yÞ in the forward direction,

y¼ 0, as a function of k2r2 is shown in Fig. 2. The far-field
pattern of W ðscaÞ

ðr,yÞ is defined by

FðyÞ ¼ �
X1
n ¼ 0

gnAðcvÞ
n cosðnyÞ: ð16Þ

From Fig. 2, we see that the exact (computed with (13))
and the approximate (computed with (15)) far-field
patterns are in good agreement for small k2r2, say,
k2r2o0:3. Also from Fig. 2, we see that the SCV approx-
imation becomes progressively worse as k2r2 approaches
unity. This is expected as the SCV approximation requires
that both k1r2 and k2r2 are much smaller than unity.
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4. Energy conservation

In this section, we present a relationship between the
rate at which the energy is extinguished by the cylindrical
void from the Uð1Þðr,yÞ field. Also, a numerical example
illustrating that the SCV approximation is in good agree-
ment with the derived energy conservation relationship is
presented.

We begin by constructing an imaginary concentric
cylinder of radius R4r1 and length L around the host
cylinder shown in Fig. 1b. Then, the rate WðabsÞ

U at which
the energy is absorbed within the imaginary concentric
cylinder is given by

WðabsÞ
U ¼�RL

Z p

�p
SU � r̂ dy, ð17aÞ

where r̂ ¼ cos y x̂þsin y ŷ (see Fig. 1), and the time-
averaged Poynting vector is given by

SU ¼
1

2
Re

ic

4pk
Uð1Þr

�
Uð1Þ

	n
 �
: ð17bÞ

In (17b), Re denotes the real part, n denotes the complex
conjugate, and k¼o=c. Now, we consider the rate WðabsÞ

V

at which the energy is absorbed by the cylindrical annulus.
By proceeding as before, we immediately obtain

WðabsÞ
V ¼�RL

Z p

�p
SV � r̂ dy, where SV ¼

1

2
Re

ic

4pk
V ð1ÞrðV ð1ÞÞn


 �
: ð18Þ

Substituting V ð1Þ ¼Uð1Þ þW ðscaÞ into (18) and using (17) to
simplify the result yields

Wext
¼WðabsÞ

V �WðabsÞ
U þWðscaÞ

W , ð19aÞ

where

Wext
¼�

RLc

8pk

Z p

�p
Re
�
iUð1Þr

�
W ðscaÞ	n

þ iW ðscaÞr
�
Uð1Þ

	n

� r̂ dy ð19bÞ

and

WðscaÞ
W ¼

RLc

8pk

Z p

�p
Re
�
iW ðscaÞr

�
W ðscaÞ	n


� r̂ dy: ð19cÞ

We interpret Wext as the rate at which the energy is
extinguished by a scatterer, namely, the cylindrical void,
in the presence of the host cylinder. In other words, it is
the rate at which the energy is depleted by the cylindrical
void from the total field, Uð1Þ, outside the host cylinder.
Moreover, from (19) we see that if the cylindrical annulus
is nonabsorbing (E2 is purely real), then Wext

¼WðscaÞ
W .

Finally, substituting Uð1Þðr,yÞ and W ðscaÞ
ðr,yÞ (see (9a) and

(10)) into (19b), and then integrating the result over y
yields

Wext
¼�

Lc

2pk

X1
n ¼ 0

gn

�
Re
�
AðcvÞ

n



þ2Re

�
AðcvÞ

n

�
AðhcÞ

n

	n
	
: ð20Þ

We interpret the first term in (20) as the rate at which
W ðscaÞ extinguishes energy from UðincÞ, and the second
term as the rate at which W ðscaÞ extinguishes energy from
UðscaÞ.

To illustrate that the SCV approximation is in good
agreement with the energy conservation principle, we
compute Wext using the exact and approximate AðcvÞ

n

coefficients. Recall that the exact AðcvÞ
n coefficients are

given by (13), and the approximate coefficients by (15).
The results of the above-mentioned computations are
shown in Fig. 3. From Fig. 3, we see that the SCV approx-
imation conserves energy to roughly 10% for k2r2r1,
which does indicate that the SCV approximation is in
good agreement with the energy conservation principle.

5. Conclusions

In this paper, we investigated a monochromatic plane
wave scattering from a solid homogeneous cylinder (host
cylinder) and a cylindrical annulus, referring to the inner part
of the cylindrical annulus as the cylindrical void. It was
shown that if the cylindrical void is thought of as a scatterer
inserted into the host cylinder, then the scattered field due to
the cylindrical void may be approximated by the screened
cylindrical void (SCV) approximation, see Section 2. The SCV
approximation was derived intuitively in Section 2 and
rigorously in Section 3. Furthermore, a formula for the rate
at which energy is depleted by the cylindrical void from the
total field outside the host cylinder was derived in Section 4.
The numerical examples in Sections 3 and 4 showed that the
SCV approximation is in good agreement with the exact
solution if the cylindrical void is small.
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