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presented.

We develop an orders-of-scattering approximation, termed the “screened cylindrical void/
core” (SCV) approximation, for a composite cylinder. The composite cylinder consists of a
large host cylinder that contains a small, eccentrically embedded, core cylinder. The SCV
approximation is developed via separation of variables in conjunction with addition theorems
for cylindrical functions. We show that the SCV approximation is in good agreement with the
numerically exact solution. A simple physical interpretation of the SCV approximation is also

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Consider a monochromatic plane wave scattering from
an infinitely long isotropic composite cylinder. The com-
posite cylinder is composed of a small core cylinder of
radius b that is eccentrically embedded into a large host
cylinder of radius a, as shown in Fig. 1. To experimentally
isolate the core cylinder's contribution to the scattered
field of the composite cylinder, one would measure the
total field UV outside the composite cylinder and the total
field UM outside an identical host cylinder. Then, the
difference, V¢ (r,0) = UV (r,0)— UD(r, ), would contain
the effect that the core cylinder had on the scattered field.
In our recent paper [1], we considered the simplest
composite cylinder geometry (the core cylinder is con-
centric with the host cylinder) and developed an approx-
imation to V®?, which we termed the “screened
cylindrical void/core” (SCV) approximation. In this paper,
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we derive an analogous formula for an eccentrically
stratified composite cylinder, which can also be inter-
preted as an orders-of-scattering approximation. Further-
more, we numerically investigate the accuracy of the SCV
approximation when |k;|a~ 300 and O < |k3|b <1, where
ky (k3) is the wavenumber in the host (core) cylinder.
Scattering by an eccentrically stratified composite
cylinder has previously been considered in the literature
in various contexts [2-4] and by various techniques [5-7].
In the electromagnetic context, a perturbation series solu-
tion has been constructed in powers of (k3—ky) [8,9],
b [10], and eccentricity [11,12] by using separation of
variables. An “exact” treatment based on separation of
variables with a truncation of the resultant infinite size
matrix is also available, e.g. in [13]. Our orders-of-
scattering approach is also based on separation of vari-
ables, but the resultant power series expansion of the
solution is different from the ones mentioned above.
There are many diverse applications where the scatter-
ing by an eccentrically stratified composite cylinder is
important, for example, see [4,8,9] and references therein.
As mentioned in [1], we are particularly interested in using
the composite cylinder to experimentally study Anderson
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Fig. 1. The cross-sectional view of the composite cylinder, with regions
labeled by a number, is shown. Region 1 is the space outside of the
composite cylinder (r > a), Region 2 is the host cylinder, and Region 3 is
the core cylinder. The origin of the (r,6) coordinate system, where
—n<0<un, is centered on the host cylinder, and the origin of the (p, ¢)
coordinate system, where —z < ¢ < =, is centered on the core cylinder. The
axes of these two coordinate systems are parallel to each other and the
center of the (p,$) coordinate system is offset by ry cos 9pX +1q sin 6py
with respect to the origin of the (r,0) coordinate system.

localization [14-16] at millimeter/sub-millimeter wave-
lengths. We are currently fabricating a model of a
millimeter-wave random medium from a large cylinder
of Teflon (ultra low-loss material) with thousands of small
holes drilled in a random pattern. To increase the dielectric
contrast between the host cylinder and the holes, we
envision filling the holes with quartz or fused silica rods;
with this dielectric contrast, the loffe-Regel criterion [17,
Section 7.4.4] for localization requires roughly two/three
scatterers (filled holes) per wavelength. Practically, the
host cylinder needs to be rather large (a ~ 10 cm) in order
to accommodate thousands of small holes (b~ 0.3 mm),
thus the numerical examples considered in this paper are
for kya~300 and O < ksb <1. Furthermore, the experi-
mental role of the host cylinder is simply to hold the rods
in place, and so it is beneficial to have a solution in which
the effects of the host cylinder and the rods on the
scattered field can be distinguished. In other words, the
SCV approximation developed in this paper for scattering
by a single core cylinder eccentrically embedded into a
large host may offer valuable physical insight into under-
standing the experimental model we described above.
Moreover, the approach taken in this paper may be
extended via a cluster T-matrix as outlined in [18, Chapter
6] to the full envisioned experiment, where thousands of
core cylinders are eccentrically embedded into one large
host cylinder.

2. Background and conventions

In this paper, we will assume that all fields are
polarized in the positive z—direction (out of the page in
Fig. 1) and have exp(—iwt) time dependence, where w is
the angular frequency. The permittivity of the space out-
side the composite cylinder (Region 1 in Fig. 1) is denoted
by ¢ e R™, and the permittivity of the host (core) cylinder
is denoted by £, e C™ (e3eC™), where R* denotes the

positive real numbers and C* denotes the complex
numbers with positive real and imaginary parts. Further-
more, the core cylinder, host cylinder, and Region 1 in
Fig. 1 are assumed to be non-magnetic. Lastly, we will use
the Gaussian unit system for all physical quantities and
only consider fields that satisfy the two-dimensional (2D)
Helmholtz equation.

The radial solution of the 2D Helmholtz equation is
composed of a linear combination of an integer order
Bessel function of the first kind and an integer order
Hankel function of the first kind, which we denote by
Jm(é) and Hy, (&), respectively. The functions J,,,(¢) and Hp (&)
satisfy the Wronskian relationship [19, Section 9.1]:

a U 2.
I OHi (&)~ OHm(&) = (1a)
and the recurrence relation [19, Section 9.2]:
¥nO="F¥m@ ¥ 15 (1b)

where ¥ denotes | or H, and the prime denotes the
derivative with respect to the argument. It is convenient
to introduce the shorthand curly bracket notation,
{#m+1(£); @m(p)}, by which we mean

(¥ 1(0; Sm()) = ¥ 1O Pl) ~ ¥ m(EPm 100
For example, if ¥ and @ satisfy (1b), then
{(¥m+1(8); Pm(n)} = gY’m(é)@n(ﬂ) — ¥ (&) Pm(n) (1o

Lastly, we note the Jacobi-Anger expansion of a plane
wave [20, p. 37], namely,

ei«f cos 0 _ Zimjm(f)eimg, (2)
m

where Y, indicates the summation from m= —oco to

m=oo.

3. Host cylinder

Consider a unit plane wave, UM = exp(ik;r cos 6), inci-
dent from Region 1 onto the host cylinder, see Fig. 1 with b=0
(i.e., without the core cylinder). Then, after decomposing the
total field in Region 1 as UM = U9 1 Y& we have [1]

[U(sca)(r,g)] m AmHm(klr):| imo
e,

3)

U0 | B (kar)
where k; = ,/gw/c for i=12 and c is the speed of light in
vacuum. In (3), U® denotes the total field inside the host
cylinder, and the expansion coefficients are given by

m

_ Ung1ra) ]y (koa)}
A= = Hy 1 (kr @) Jm(20)) “a)
—2i (4b)

™7 2k1a{Hp 11 (k1 0): ] (Ko@)

4. Composite cylinder

If the plane wave U is incident from Region 1 onto
the composite cylinder shown in Fig. 1, then the total fields
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in Regions 1, 2, and 3 may be written as

U (r,0) = U0+ VE(r,0), (5a)
U2(r,0:p. ) = UP(1,0)+ V(1. 0; p, ), (5b)
and

U (p, §) = Ti" Dy (k3p)e™, (50)

respectively, where

VED(r, 0) = Yi" ApHm(kir)e™, (5d)
m

VOT,0:p, ) = X" Binf m(kar)e™ + CnHm(kap)e™),  (5e)

and k3 = /ezw/c. In writing (5), we are thinking of the
composite cylinder as the host cylinder into which a
scatterer (the core cylinder) has been inserted. Also, notice
that we required U®(p,) to be finite at p=0, and
imposed the Sommerfeld radiation (outgoing cylindrical
wave) condition on V®(r, ¢). To find the unknown expan-
sion coefficients in (5), we require that the electric field
and its normal derivative be continuous across the p=b
and r=a interfaces.

To apply the continuity conditions at the p = b interface,
we first re-express U®(r, 6 p, ¢) solely in terms of the (p, ¢)
coordinate system by using Graf's addition theorem [20,
Section 2.5]; [19, Section 9.2]. Namely, using

In(kyr)e™ = %‘Jm7n(l<zro)e“'"‘”)"°Jn(l<zp)ei”¢,
and (3) with (2), we obtain
UP(p.¢) = Zi"Ja(k2p)e™ ETum(Bm+Bm)

+ %i'"cmHm(kzp)ei'"‘/’,

where Ty =i" "], (karo)el™~™%  Then, requiring that

U? =U® and (3/ap)U? = (3/ap)U> on p =D yields
DIJ.]p(k3 b) = CpyHp(kab)+(— 1)p]p(k2b)ZTpm(Bm +Bn), (6a)
m

and

k ! ! !
éDp]p(kab) = CpH),(kab)+(— 1)P],(kab) ST pm(Bm + Br).

(6b)
respectively. Eliminating D, from (6) yields
Cp=(~— 1)p4p 2 Tpm(Bm+Bm), (7a)
m
where
Ap _ {]p+](k3b);_’p(k2b)} (7b)

* Up1(ksb): Hp(kob)y

Similarly, to apply the continuity conditions at the r=a
interface, we first re-express U(r,0; p, ¢) solely in terms
of the (r,0) coordinate system by using Graf's addition
theorem for Hy,(kyp)e™ [20, Section 2.5]; [19, Section 9.2].
Namely, using

H(kap)e™ = F(=1)" "]y _n(karo)e™ " Hy(kyr)e™?
n

for r > rg, and (3) with (2), we obtain
UP(r,0) = Xi" (B +Bn)m(kar)e™
m

+ Xi"Hn(ko1)e™ ¥ (— 1) Ty C,
n m

for ro+b<r<a. Then, requiring that UY =U? and

(0/or)UY = (9/or)U® on r=a yields

(By + Byl (ko) + Hy (ko) Z(—~ 1) TypmCn
=Jp(kia)+(Ap+ApHp(k1a), (8a)

and

(Bp+Bp)Jp(k20)+Hy (ko)X= 1) Ty Ci

= e Ppttaar (2 A Hyikia), (8b)

respectively. To solve (8) for A, in terms of C, we
eliminate (B,+B,) from (8), and then use (1a) and (4) to
rewrite the result as

Ap=Bp X (— D)™ TpmC. 9)

To solve (8) for B, in terms of Ay, we eliminate Cp, from (8),
and use (1a) to obtain

2i

nl{la(Bp +BP)

(Ap+Ap) {Hp 4 1(k1@); Hp(ka @)}
+Up+1(ki@); Hp(kaa)}. (10)

To simplify (10) further, we substitute (4) into (10) and
note that

{]p+ 1(kia); Hp(kza)}{Hp+ 1k a);]p(kza)}

2 2
= Uy a0 a1 Ryl = ()

to obtain

kia
B, = ’” S tHp 10 Hy(lo0)Ap. (11)

Fmally, substltutlng (11) into (7a), and putting the result
into (9) yields

2(8mn — Fnn)An = G, (12a)
n

where

Frn = TBm <2TmpAprn> {Hn41(k1a); Ho(koa)}, (12b)

Gmn=YBn (ZTmpAprn> By, (12¢)
n p

and &mn denotes the Kronecker delta function.

Notice that in (12) the core cylinder parameters,
namely ks and b, are solely contained in 4p, see (7b).
Furthermore, from (7b) and the small argument forms of J,
and H,, we see that if the core cylinder is small, then so is
Ap. This suggests that (12a) can be solved via the Neumann
series (Taylor series expansion, if you will), i.e.,

A=1-F1G= z F’G, (13)

£=0
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Fig. 2. (color online). The spectral radius of F at 100 GHz for a Teflon host
cylinder (a = 10 cm) with an eccentrically embedded quartz core cylinder
is shown as a function of |ks;|b, and eccentricity, ro/a (with 6y = 0). The
permittivity of Teflon and quartz at 100 GHz is 2.1 and 3.8 with a
negligible loss-tangent [22], respectively.

where A, Fun, G, are the elements of A, F, G, respectively,
and I is the identity matrix. The Neumann series in (13)
converges, provided that the spectral radius of F is less
than one [21, Section 4.3]. The spectral radius of F for a
large host cylinder, |k;la~ 300, with an eccentrically
embedded core cylinder is shown in Fig. 2. From Fig. 2,
we see that the spectral radius of F is indeed much smaller
than one and thus, we expect the Neumann series in (13)
to converge rapidly. We will discuss the spectral radius of F
further in Section 6, but for now turn our attention to the
physical interpretation of the SCV approximation.

5. The SCV approximation and its physical interpretation

If only the # =0 term is retained in (13), we obtain the
SCV approximation, namely,

An =G =Y Bn (szpAprn> By (14)
n p

To interpret (14) physically, we consider the following
three-step scattering process:

1. If a unit plane wave, U = exp(ik,r cos 6), is incident
on the host cylinder, then the field inside the host
cylinder, U®(r,0), is given by (3). Rewriting U® terms
of the (p, ¢) coordinate system yields

U@(p, ) = Xi ™ "Jn(k2p)e™ X Trm Bin. (15)

2. If we use (15) as an incident field for the core cylinder,
then the resulting scattered field is

Si"CnHm(kop)e™, (16a)
m

and the field inside the core cylinder is
0%, §) = Zi" D m(ksp)e™. (16b)
m

Substituting (15) and (16) into the continuity condi-
tions for the p =b interface, and eliminating D,, from
the resultant two equations, yields

Cp=(—=1PA, X TpmBnm. 17)

3. Finally, if we use (16a) with (17) as an incident field
(from within the host cylinder) on the r=a interface,
then there will be an outgoing field outside the host
cylinder given by

~ (sca)

Vo, 0) = Yi"AmHp(kir)e™, (18a)
m

and a regular (finite at r=0) field inside the host
cylinder given by

Si" B (kaor)e™. (18b)

Rewriting (16a) in terms of the (r, #) coordinate system
and substituting it, as well as (18), into the continuity
conditions for the r=a interface, and eliminating By,
from the resultant two equations yields

An=YBn (zrmpA,,Tpn> Bh. (19)
n P

By comparing (19) with (14), we conclude that the SCV
approximation can be viewed as an orders-of-scattering
approximation. Moreover, from the above three-step scat-
tering process, we see that Tp,;B, is the “screening” effect
of the host cylinder on U and By, Ty is the “screening”
effect of the host cylinder on V®? . These two screening
effects are identical if the core cylinder is concentric with
the host cylinder, as we have shown in [1]. To see that (19),
or equivalently (14), reduces to our previous result, we
note that Tp, = i" *P6pn and Tpp = iP* "6mp when rp = 0, and
thus, the sums in (19) collapse and we obtain A, = B2 Am.

6. Numerical examples and limitations

In practice, the computation of the A,, coefficients via
(12) or (14) requires the truncation of the infinite sums, as
well as the index m. From (12b), (12c¢) and (14), we see that
the sum over p is controlled by the small core cylinder
parameters, namely A,. This observation suggests that the
summation over p be terminated at p,,, (i.e., |P| < Pmax)s
where p... is given by the well-known Wiscombe's
criterion for small scatterers [23], namely,

Pmax = [kab+4(kob)' 3 +17. (20a)

The sum over n, as well as the index m, is controlled by the
large host cylinder and thus, they are terminated at Npax
(i.e., |n| < Nmax and |m| < Npax ), Where Npax is given by the
Wiscombe's criterion for relatively large scatterers [23],
namely,

Nmax = [k1a+4.05(kya)'/3 +27. (20b)
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We note that a termination criterion in terms of prescribed
relative error has become available recently [24], but for
our purposes, the termination condition given by (20) will
be sufficient.

To numerically illustrate the accuracy of the SCV
approximation, we compute the relative error in the rate
at which the energy is extinguished by the core cylinder in
the presence of the host cylinder. The rate at which the
energy (per unit length of the composite cylinder) is
depleted by the core cylinder from the total field, U™,
outside the host cylinder is given by [1]

€2 Nmax
Qe = —5 ZN (Re[Am]+2Re[AnAL]), 21
m = — Nmax

where Re denotes the real part and * denotes the complex
conjugate. We compute the SCV approximate and numeri-
cally exact (~ 7 significant digits) Q*** by using (21) with
(14) and (21) with (13), respectively. The top row of Fig. 3
shows that the SCV approximation is in good agreement
with the numerically exact solution, and the bottom row of
Fig. 3 demonstrates that the Neumann series in (13)
converges rapidly as one would expect from the spectral
radius of F, see Fig. 2. Furthermore, from Fig. 3 we see that
the relative error in Q%' is almost independent of the
angular position of the core cylinder but does depend on
its radial position, see Fig. 3 with ro/a > 0.7.

The dependence of the relative error in Q" on the
radial position of the core cylinder may be explained in
terms of the internal resonances of the host cylinder. These
resonances are often referred to as Mie resonances, mor-
phological resonances, whispering-gallery modes, or nat-
ural/eigenmodes. At 100 GHz, the 10 cm host cylinder is
about hundred times larger than the wavelength of the
incident light and thus, the interaction of light with the
host cylinder can be described by ray theory. If a ray inside
the host cylinder strikes the surface of the host cylinder
above the critical angle, then the ray's trajectory will be
bounded by a cylindrical annulus with outer radius a and
inner radius r.a,sic. To find the caustic radius, rcysiic, We set
the ray's angular momentum |k, 4|17 equal to |m|a (the
angular momentum of the mth eigenmode) and note that
ki = I<§’(,+k§!r to obtain

ext

m

ol (22a)

T caustic =

In the derivation of (22a), we used the fact that the radial
component of the wavevector must vanish on rcaystc, i.€.,
ko (r =Tcaustic) =0 [25,26]. Furthermore, we can deduce
the range of potentially excited eigenmodes of the host
cylinder as follows. If a ray inside the host cylinder strikes
the surface at an angle y with respect to the normal, then
by equating the ray's and modal angular momenta
(Im| = |kz]a sin y), and using the total internal reflection
condition, y/e1/e; < sin y < 1, we obtain

lk1la <m < |ky|a. (22b)

Finally, from (22), we see why the SCV approximation worsens
when the radial location of the core cylinder exceeds the
caustic radius, see Fig. 3 for ro/a > reusic/a~ 0.7.

If the frequency of the incident wave corresponds to
one of the eigenfrequencies of the host cylinder, then the

1.0
0.8
T 0.6
a 04
0.2

0.2040.60.8 1.0
|K3|b

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1

Fig. 3. (color online). The relative error in Q*** (in percent) is shown as a
function of |k3|b and eccentricity, ro/a, for various 6y angles. The top row
shows the relative error if only the # =0 term is retained in (13), i.e., the
SCV approximation, and the bottom row shows the relative error if the
¢=0and ¢ =1 terms are retained. The above plot was produced with the
same parameters as the ones described in the caption of Fig. 2.

Neumann series in (13) will fail to converge only when
To > Tcaustic- FOr example, the mode m=228 is excited in
resonance at approximately 99.823859 GHz, i.e. the
denominator of B,,g vanishes at this frequency,! and the
spectral radius of F exceeds unity when ro/a < rcaustic/a =
228/(kpa)~ 0.75 as shown in Fig. 4. Moreover, from Fig. 4
we see that the SCV approximation remains valid even at
resonance frequency, provided that ro/a < r'caystic/a ~ 0.75.

7. Conclusions

In this paper, we have extended the screen cylindrical
void/core (SCV) approximation [1] to a case where the
small core cylinder is eccentrically embedded into a large
host cylinder. We physically interpreted the SCV approx-
imation as the screening effect of the host cylinder on the
incident plane wave and the wave scattered by the core
cylinder (see Section 5). Furthermore, we showed that the
SCV approximation may be thought of as an orders-of-
scattering approximation.

The accuracy of the SCV approximation was demon-
strated numerically for an envisioned localization experi-
ment, where a large host cylinder (k,a~ 300) contains a
small (ksb~ 1) eccentrically embedded core cylinder. In
general, the SCV approximation was shown to be in good
agreement with the exact solution, even at the eigenfre-
quencies of the host cylinder. We showed that if the
incident frequency corresponds to one of the eigenfre-
quencies of the host cylinder, then the SCV approximation
remains valid, provided that the eccentricity ro/a does not
exceed the caustic radius of the mode (see Section 6). This

1 Strictly speaking, this occurs at a complex eigenfrequency, where
the imaginary part of the eigenfrequency is related to the spectral width
of the mode [27].
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Fig. 4. (color online). The spectral radius of F at eigenfrequency
99.823859 GHz is shown as a function |k3;|b and eccentricity, ro/a (with
6p = 0). The above plot was produced with the same parameters as the
ones described in the caption of Fig. 2.

condition was derived by considering the interplay
between the ray and wave pictures of the scattering
process. Moreover, the ray picture offered a valuable
physical insight into the validity of the SCV approximation.
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