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a b s t r a c t

The S-matrix algorithm for the propagation of an electromagnetic wave through planar
stratified media has been implemented in a modern object-oriented programing language.
This implementation is suitable for the study of such applications as the Anderson locali-
zation of light and super-resolution (perfect lensing). For our open-source code to be as
useful as possible to the scientific community, we paid particular attention to the patholog-
ical cases that arise in the limit of vanishing absorption.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

Electromagnetic wave propagation through planar stratified media (multilayer stack) is a century old problem in physics
[1,2]. It may be somewhat surprising that it is still relevant today. In fact, it has only relatively recently been discovered that
the transmission and reflection coefficients for a multilayer stack may be written down without any computations by using a
complex version of the elementary symmetric functions [3,4]. It has also been recently discovered that the complex reflec-
tion coefficients follow the generalized version of the composition law used to add parallel velocities in the theory of special
relativity, see [5,6] and Refs. within. It is possible to use the aforementioned properties to formulate a numerical wave prop-
agation algorithm in planar stratified media as was done in [7], yet the resulting algorithm appears to be numerically unsta-
ble. The more traditional approach of the late 1940s, namely, the transfer matrix algorithm [8–11], is also numerically
unstable. Both algorithms are numerically unstable because they contain exponentially increasing and decreasing terms,
see Section 5. There also exists an R-matrix algorithm [12–15], but it is only conditionally stable (for reasons different from
above) [12,15]. We use a simple version of the S-matrix algorithm, which is numerically stable [15–19]. Before considering
the details of the S-matrix algorithm and the need for its open-source implementation in a modern object-oriented language,
we briefly mention some of the current applications we had in mind when we wrote the code.

In 1968, Veselago [20] considered a hypothetical non-active material in which the real parts of the permittivity and per-
meability are simultaneously negative; we refer to such a material as a left-handed material (LHM), but it is also known as a
negative refractive material. It was only in the early 2000s that such an artificial material was fabricated [21,22], leading to an
explosion of papers on the LHM, see [23] and Refs. within. One of the intriguing properties of the LHM is the ability to image
with a sub-wavelength image resolution (super-resolution if you will), which has been proposed and studied in the context
of a multilayer stack [24,25]. Another general area of application is the Anderson localization of light [26,27], which has been
. All rights reserved.
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studied both theoretically and experimentally by Scales et al. [28], who considered wave propagation at normal incidence
through a multilayer stack made of quartz and Teflon wafers. The effects of total internal reflection on light localization
in a random multilayer stack at oblique incidence have also been studied under the assumption of complete phase random-
ization [29] along with the effects of the LHM on localization [30]. Other applications include the study of asymmetrical
properties of light in a Fabry-Pérot interferometer [31,32].

In all of the above applications, the S-matrix algorithm was or could have been used; however, to the best of our knowl-
edge, an open-source and object-oriented implementation of the S-matrix algorithm suitable for the LHM as well as the
right-handed material (RHM) (where the real parts of the permittivity and permeability are not simultaneously negative)
is currently unavailable. Almost certainly, there are many ‘‘in-house’’ implementations of some version of the algorithms dis-
cussed above being passed around among colleagues. We suspect that some users of these ‘‘in-house’’ algorithms may be
unaware of the numerical stability issues and of pathological cases where the numerical implementation is not clear, as dis-
cussed in Section 3. Moreover, in the context of reproducibility of scientific work, it is important to have an open-source and
publicly available implementation.

This paper is self-contained as much as possible in order for our implementation of the S-matrix algorithm to be useful to
the widest possible scientific community. We also point out the benefits and drawbacks of using a high-level programing
language called Python for implementing our code, see Section 9.
2. Background

The source-free macroscopic Maxwell equations with assumed harmonic time dependence, exp (�ixt), in the Système
International (SI) unit system, at every ordinary point in space, are:
1 For
2 We

function
r � D ¼ 0; r � B ¼ 0; ð1aÞ
r � E ¼ ixB; r�H ¼ �ixD; ð1bÞ
where E is the electric field, D is the displacement field, B is the magnetic field, H is the magnetic intensity, and x is the
angular frequency. By an ordinary point in space, we mean a point in space in whose ‘‘neighborhood’’ the physical properties
of the medium are continuous. Thus, strictly speaking, one cannot apply Maxwell’s equations at a surface that separates two
physically different media. If the medium is isotropic and homogeneous, then D = �E and B = lH, where � and l are the per-
mittivity and the permeability, respectively. Permittivity must satisfy the Kramers–Kronig relations and is therefore a com-
plex-valued function of angular frequency. The same is true for permeability. Thus, in general, we have � ¼ �ðxÞ 2 C and
l ¼ lðxÞ 2 C.

The source-free macroscopic Maxwell equations are first-order linear partial differential equations (PDEs) that must be
supplemented by some boundary conditions. The conventional boundary conditions for a source-free interface separating
two media (1 and 2) are:
n � Dð2Þ � Dð1Þ
� �

¼ 0; n � Bð2Þ � Bð1Þ
� �

¼ 0; ð2aÞ

n� Eð2Þ � Eð1Þ
� �

¼ 0; n� Hð2Þ �Hð1Þ
� �

¼ 0; ð2bÞ
where n is a unit normal to the interface, and the superscript on the fields indicates from which medium the interface is
approached.

Taking the curl of (1b), then simplifying the result using the r� (r� A) =r(r � A) �r2A vector identity and (1a), we
obtain the vector Helmholtz equation within each layer
r2 þ k2
� � E

H

� �
¼ 0; ð3Þ
where k is the complex wavenumber, and k2 = l�x2. In general, k2 – kk⁄, where ⁄ denotes the complex conjugate, and the
computation of k from k2 must be done with extreme care. For example, the permittivity and permeability for an absorbing
material are taken to be � = �0 + i�00 and l = l0 + il00, respectively, where f�0;l0g 2 R; f�0;l00g 2 Rþ and Rþ denotes the positive
real numbers.1 Let � ¼ j�jeih� and l ¼ jljeihl , where {h�,hl} 2 [0,p].2 Then
k2 ¼ �lx2

k ¼
ffiffiffiffiffiffiffiffiffiffiffi
j�jjlj

p
xei

h�þhlþ2pn
2

� �
; n ¼ 0;1; ð4Þ
where x > 0. The choice of the root in (4) is dictated by the physical requirement that, in an absorbing medium, the wave
must decay and not exponentially grow. Let k ¼ k0 þ ik00; fk0; k00g 2 R. Without loss of generality, consider a plane wave
the exp (+ixt) time dependence, e = e0 � ie00 , l = l0 � il00 , where f�0;l0g 2 R; f�00;l00g 2 Rþ .
always mean the positive square root of x when we write

ffiffiffi
x
p

, where x 2 Rþ . The fundamental issue with the w ¼ z
1
2 mapping is that the ‘‘square root’’

has branch points at z = 0 and z =1 and thus must have a branch cut connecting the two branch points, see [51, vol. 1, Section 54].



Fig. 1. The cross-sectional view of the multilayer stack is shown. The multilayer stack consists of p + 1 regions made of a RHM. A parallel polarized wave is
incident from a semi-infinite ambient medium (region p). The origin of the coordinate system is set on the planar interface separating regions p and p � 1.
The 0th region is a semi-infinite substrate.
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propagating in the positive x-direction; then, we have eiðkx�xtÞ ¼ e�k00xeiðk0x�xtÞ. Therefore, k00 must be greater than zero in order
for the wave to decay in the positive x-direction.

2.1. Pathological cases at normal incidence

In the case of a perfect dielectric (�00 = 0 and l00 = 0), the rule for choosing a physically appropriate root in (4) may be estab-
lished by taking the limit as absorption goes to zero.

Consider an almost perfect dielectric made of the RHM. Let � ¼ j�jeih� ; l ¼ jljeihl , where h� and hl are infinitesimally
small positive numbers, then h�þhl

2 � p and h�þhl
2 þ p > p. Thus, we must choose the n = 0 root in (4), i.e.,

k ¼
ffiffiffiffiffiffiffiffiffiffiffi
j�jjlj

p
ei

h�þhl
2

� �
x. In the case of a truly perfect dielectric (at fixed frequency), we may take the limit as h� and hl approach

zero to obtain k ¼
ffiffiffiffiffiffiffiffiffiffiffi
j�klj

p
x.

In the case of an almost perfect dielectric made of a LHM: Let � ¼ j�jeih� ; l ¼ jljeihl , where h� and hl are slightly less than

p, then h�þhl
2 < p and h�þhl

2 þ p > p. Thus, we must again choose the n = 0 root in (4), i.e., k ¼
ffiffiffiffiffiffiffiffiffiffiffi
j�klj

p
ei

h�þhl
2

� �
x. For a truly per-

fect dielectric (at fixed frequency), we may take the limit as h� and hl approach p to obtain k ¼
ffiffiffiffiffiffiffiffiffiffiffi
j�klj

p
eipx ¼ �

ffiffiffiffiffiffiffiffiffiffiffi
j�klj

p
x.

Notice that for the LHM with zero absorption, k < 0, and for the RHM with zero absorption, k > 0.

3. Wave propagation in stratified media

Consider the three-dimensional space divided into p + 1 regions. The regions are infinite in the yz-plane, see Fig. 1. The
interfaces separating the regions are assumed to be perfectly planar (yz-plane). The regions ‘ = 0, . . . ,p � 1 are assumed to
be isotropic and homogeneous with a complex permittivity, �‘, and complex permeability, l‘. The region p is assumed to
be isotropic and homogeneous with real permittivity, �p, and real permeability, lp. In other words, we have f�‘;l‘g 2 C

for ‘ = 0, . . . ,p � 1 and f�p;lpg 2 R.
A monochromatic plane wave in the ‘th region is given by
3 We
The poi
E‘ðr; tÞ
H‘ðr; tÞ

� �
¼

E‘

H‘

� �
eiðk‘ �r�xtÞ; ‘ ¼ 0; . . . ;p; ð5Þ
where r ¼ xx̂þ yŷ þ zẑ; fE‘;H‘g are the complex vector amplitudes, k‘ ¼ kx;‘x̂þ ky;‘ŷ þ kz;‘ẑ is the complex wavevector. It is
clear that (5) satisfies (3) if
k‘ � k‘ ¼ k2
x;‘ þ k2

y;‘ þ k2
z;‘ ¼ k2

‘ ¼ �‘l‘x
2: ð6Þ
Without loss of generality, we can set kz,‘ = 0 because we can always rotate the coordinate system so that the y-axis is par-
allel to the part of the k vector that lies in the yz-plane, see Fig. 1.3 The solution given by (5) in each region must also satisfy the
boundary conditions given by (2). Substituting (5) into (2) yields,
ky;p ¼ ky;‘; ‘ ¼ 0; . . . ;p� 1; ð7Þ
where ky;p 2 R because we have assumed that the region p has real permittivity and permeability. Therefore, from (7) we
have ky;‘ 2 R, but note that in general, kx;‘ 2 C for ‘ = 0, . . . ,p � 1. Using (6) and (7) yields
could have chosen to set ky,‘ = 0, and then rotated the coordinate system so that the z-axis is parallel to the part of the k vector that lies in the yz-plane.
nt is that k can always be made into a two-dimensional vector.
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kx;‘ ¼ �‘l‘x
2 � k2

y;p

� �1=2
with Im½kx;‘� > 0 ð8Þ
for ‘ = 0, . . . ,p, where Im denotes the imaginary part, and the root choice, Im[kx,‘] > 0, is dictated by the decaying wave
requirement, see Section 2.

3.1. Pathological cases at oblique incidence

It is clear from (8) that if �00‘ ¼ 0; l00‘ ¼ 0 and �‘l‘x2 > k2
y;p, then the root choice is not resolved by the Im[kx,‘] > 0 require-

ment. In order to resolve the root choice, we proceed by taking a limit as absorption goes to zero just as we did in Section 2.1.
For the RHM, let �‘ ¼ j�‘jeih�‘ ; l‘ ¼ jl‘jeihl‘ and for the LHM, let �‘ ¼ j�‘jeiðp�h�‘ Þ; l‘ ¼ jl‘jeiðp�hl‘ Þ, where h�‘ and hl‘ are infin-

itesimally small positive numbers. Then k2
x;‘ can be approximately written as k2

x;‘ � jAje�ic, where 0 6 c� p; limf�00
‘
;l00
‘
g!0c ¼ 0,

and the positive (negative) sign in the exponential corresponds to the RHM (LHM). Thus, we have
Im½kx;‘� ¼
ffiffiffiffiffiffi
jAj

p
sin

�c
2

	 

; sin

�c
2
þ p

	 
� �
;

where it is clear that for the RHM (LHM) the first (second) root must be chosen in order for Im[kx,‘] > 0. Therefore, if

�00‘ ¼ 0; l00‘ ¼ 0 and �‘l‘x2 > k2
y;p, then for the RHM we have kx;‘ ¼ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j�‘kl‘jx2 � k2

y;p

q
, and for the LHM we have

kx;‘ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j�‘kl‘jx2 � k2

y;p

q
.

3.2. Origin and numerical treatment of the pathologies

The limiting procedure carried out in Section 2.1 and 3.1 appears to be reasonable, but unfortunately, it is also not phys-
ically attainable, even in principle! If we view �(x) and l(x), where x = x0 + ix00, in the context of the Kramers–Kronig rela-
tions, then �(x) and l(x) are analytic functions in the upper-half x-plane. Furthermore, it can be shown that �(x) and l(x)
are never purely real for any finite x except for x0 = 0 (positive imaginary axis), e.g., see [33, Section 123] and [34, Section
82]. Therefore, the common practice of replacing �0 + i�00 by �0 and l0 + il00 by l0 even in an infinitesimally small x0 interval
cannot be justified. Moreover, by considering the global behavior of kx,‘ it can be shown that for a non-active medium kx,‘ is
never zero [35]. However, we see from (8) that kx,‘, for any ‘ – p may be equal to zero if �‘ and l‘ are purely real. Of course,
this case only occurs when the angle of incidence precisely equals one of the critical angles, and from the global properties of
� and l we see that such angles cannot exist.

The above discussion suggests that the pathological cases only occur in an unphysical approximation, i.e., � � �0 and l � l0.
In our numerical code, the user may select how to deal with the pathologies from the following two schemes:

1. If a region contains purely real permittivity and permeability, then the real permittivity and permeability are replaced by
a slightly absorbing permittivity and permeability, respectively, i.e., for ‘ – p; �0‘ ! �0‘ þ i�00‘ and l0‘ ! l0‘ þ il00‘ , where �00‘
and l00‘ are small positive numbers.

2. If a region contains purely real permittivity and permeability, then the kx,‘ is computed as describe in Section 2.1 and 3.1.
If this scheme is chosen, then the code may produce erroneous results at or very near the critical angles.

4. Polarization

The most general polarization state is an elliptical polarization state. However, there is no need to consider this general case
because an elliptical polarization state can always be decomposed into a linear combination of two linearly independent polar-
ization states, namely, the parallel polarization state and the perpendicular polarization state. In what follows, it is convenient
to express E‘(r, t) and H‘(r, t) in terms of each other by substituting (5) into (1b) (with D‘ = �‘E‘) and using the vector identity
r� E‘ðr; tÞ
H‘ðr; tÞ

� �
¼ ik‘ �

E‘

H‘

� �
eiðk‘ �r�xtÞ
to obtain
E‘ðr; tÞ ¼ �
k‘ �H‘ðr; tÞ

�‘x
; ð9aÞ

H‘ðr; tÞ ¼
k‘ � E‘ðr; tÞ

l‘x
: ð9bÞ
4.1. Parallel polarization

A monochromatic plane wave is said to have parallel polarization if the electric field is parallel to the plane of incidence.
The plane of incidence is defined by the wavevector k and the normal vector to the surface n; i.e., k and n lie in the plane of
incidence. From Fig. 1, we have k in the xy-plane and n ¼ �x̂, thus, the plane of incidence is the xy-plane.
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Consider a parallel polarized incident plane wave of angular frequency x propagating in the positive x-direction. Max-
well’s equation (1) are linear PDEs, thus, the total wave inside each region may be decomposed into reflected and transmit-
ted waves with the following wavevectors:
k�‘ ¼ �kx;‘x̂þ ky;‘ŷ; ð10Þ
where kx,‘ is given by (8), ky,‘ is given by (7), + indicates a transmitted wave propagating in the +x-direction, and � indicates a
reflected wave propagating in the �x-direction; notice that there is no reflected wave in the 0th region, see Fig. 1. The mag-
netic intensity in each region is given by
H�‘ ðr; tÞ ¼ �‘xE�‘ exp i k�‘ � r�xt
� �h i

ẑ; ð11Þ
where Eþ‘ is the complex amplitude associated with the transmitted wave, E�‘ is the complex amplitude associated with the
reflected wave, and E�‘¼0 	 0. Substituting (11) into (9a) yields
E�‘ ðr; tÞ ¼ E�‘ exp i k�‘ � r�xt
� �h i

�ky;‘x̂� kx;‘ŷ
� �

: ð12Þ
From (2b), we see that the y-component of the total electric field and the total magnetic intensity are continuous across the
interface. It is convenient to define a new symbol for the y-component of the electric field evaluated on the interface. Let
v�‘ ¼ �kx;‘E
�
‘ exp �ikx;‘

Xp

s¼‘þ1

hs

" #
; ð13Þ
where h‘ is the thickness of the ‘th region and, for convenience, we set h‘=0 = h‘=p 	 0. In (13), v�‘¼0;...;p�1, denotes the y-com-
ponent of the electric field at the interface between regions ‘and ‘ + 1 (the interface is approached from the ‘th region), and
v�‘¼p denotes the y-component of the electric field at the interface between regions p and p � 1 (the interface is approached
from region p), see Fig. 1. Substituting (11) and (12) into (2b), and using (13) to simplify the result, yields
eþikx;‘þ1h‘þ1vþ‘þ1 þ e�ikx;‘þ1h‘þ1v�‘þ1 ¼ vþ‘ þ v�‘ ; ð14aÞ
w‘þ1 eþikx;‘þ1h‘þ1vþ‘þ1 � e�ikx;‘þ1h‘þ1v�‘þ1

� �
¼ w‘ vþ‘ � v�‘

� �
; ð14bÞ
for ‘ = 0, . . . ,p � 1, where
w‘ ¼
�‘x
kx;‘

; ‘ ¼ 0; . . . ; p: ð15Þ
After we obtain a linear system for the perpendicular polarization case, we will solve the linear system given by (14), see
Section 5.

4.2. Perpendicular polarization

A monochromatic plane wave is said to have perpendicular polarization if the electric field is perpendicular to the plane of
incidence. The electric field in each region is given by
E�‘ ðr; tÞ ¼ E�‘ exp i k�‘ � r�xt
� �h i

ẑ; ð16Þ
where k�‘ is given by (10), and the ± superscripts have the same meaning as in Section 4.1. Also as in Section 4.1, we set
E�‘¼0 	 0 because there is no reflected wave in the 0th region. Substituting (16) into (9b) yields
H�‘ ðr; tÞ ¼
E�‘
l‘x

exp i k�‘ � r�xt
� �h i

ky;‘x̂
 kx;‘ŷ
� �

: ð17Þ
From (2b), we see that both the total electric field and the y-component of the total magnetic intensity are continuous across
the interface. Let the electric field evaluated on the interface be denoted by
v�‘ ¼ E�‘ exp �ikx;‘

Xp

s¼‘þ1

hs

" #
; ð18Þ
where v�‘¼0;...;p�1 denotes the z-component of the electric field at the interface between regions ‘and ł + 1 (the interface is ap-
proached from the ‘th region) and v�‘¼p denotes the z-component of the electric field at the interface between regions p and
p � 1 (the interface is approached from region p). Substituting (16) and (17) into (2b), and using (18) to simplify the result,
yields (14), where
w‘ ¼ �
kx;‘

l‘x
; ‘ ¼ 0; . . . ; p: ð19Þ
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Notice that the linear system for the perpendicular polarization case is the same as the linear system for the parallel polar-
ization case, but the definitions of v�‘ and w‘ are different.
5. Linear system

The traditional approach to solving the linear system given by (14) is to rewrite it as
vþ‘þ1

v�‘þ1

" #
¼ M‘

vþ‘
v�‘


 �
; ‘ ¼ 0; . . . ; p� 1; ð20aÞ
where
M‘ ¼
1

2w‘þ1

ðw‘þ1 þw‘Þw�1
‘þ1 ðw‘þ1 �w‘Þw�1

‘þ1

ðw‘þ1 �w‘Þwþ1 ðw‘þ1 þw‘Þw‘þ1

" #
; ð20bÞ
and w‘ = exp (ikx,‘h‘). To compute vþ0 , we iterate (20a) until ‘ = p � 1 to obtain
vþp =vþ0
v�p =vþ0

" #
¼ Mp�1Mp�2 . . . M0

1
0


 �
: ð21Þ
After computing vþ0 from (21), we can find v�‘ from (20a). The approach outlined above is the standard transfer matrix meth-
od, but unfortunately it is numerically unstable because the top half of M‘ grows exponentially and the bottom half of M‘

decreases exponentially if Im[kx,‘h‘] – 0. To avoid the numerical instability, we must reformulate the linear system given
by (14) in terms of w‘ or w�1

‘ alone. If Im[kx,‘h‘] is large, then w‘ may cause underflow errors and w�1
‘ may cause overflow

errors. Generally speaking, underflow is preferred to overflow because when underflow occurs, the (normal) number is
rounded to the nearest subnormal number or to 0.0; thus, it is desirable to reformulate the linear system in terms of w‘ in-
stead of w�1

‘ (see Section 5.1).

5.1. S-matrix

In this section, we present a particularly simple version of the S-matrix formulation of (14) that avoids numerical insta-
bilities. To derive the S-matrix, we write a scattering matrix (S-matrix) for an ‘‘aggregate layer’’ consisting of 0, . . . ,‘ layers to
obtain
v�‘
vþ0


 �
¼

sð1;1Þ‘ sð1;2Þ‘

sð2;1Þ‘ sð2;2Þ‘

" #
0
vþ‘


 �
: ð22Þ
Using (20) to eliminate v�‘ from (22) and comparing the result to (22) with ‘? ‘ + 1 yields
sð1;2Þ‘þ1 ¼
w‘þ1 �w‘ 1� sð1;2Þ‘

h i
1þ sð1;2Þ‘

h i�1

w‘þ1 þw‘ 1� sð1;2Þ‘

h i
1þ sð1;2Þ‘

h i�1 w2
‘þ1; ð23aÞ

sð2;2Þ‘þ1 ¼
2w‘þ1sð2;2Þ‘

w‘þ1 1þ sð1;2Þ‘

h i
þw‘ 1� sð1;2Þ‘

h iw‘þ1; ð23bÞ
for ‘ = 0, . . . ,p � 1, where sð1;2Þ0 ¼ 0 and sð2;2Þ0 ¼ 1. Substituting ‘ = p into (22) yields vþ0 =vþp ¼ sð2;2Þp , where sð2;2Þp is computed
recursively from (23b). Using (20) to compute v�‘ would make the algorithm numerically unstable. To avoid introducing
numerical instability in the computation of v�‘ , we eliminate vþ0 and v�‘þ1 from (20) and (22) to obtain
vþ‘ ¼
2w‘þ1w‘þ1

w‘þ1 1þ sð1;2Þ‘

h i
þw‘ 1� sð1;2Þ‘

h ivþ‘þ1; ð24aÞ
for ‘ = p � 1, . . . ,0 and
v�‘ ¼ sð1;2Þ‘ vþ‘ ; ‘ ¼ p; . . . ;1: ð24bÞ
Notice that v�‘ only depends on sð1;2Þ‘ . The S-matrix algorithm is numerically stable because (23a) and (24) only depend on w‘.
Originally, (23a) and (24) were derived in [16] by citing the general scattering-theory paradigm that requires existence of

a linear relationship between v�‘ and vþ‘ , i.e., v�‘ ¼ sð1;2Þ‘ vþ‘ , and then substituting it directly into (20) to obtain (23a) and (24a).
Arguably our derivation is just as simple as in [16] but follows the traditional S-matrix formulation [15,17] more closely.

We would like to note that it is possible to formulate an S-matrix algorithm where v�‘ are computed directly from vþp
[18,19], but such a formulation requires recursive computation of three elements of an S-matrix rather than just one element
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in our formulation. Moreover, it is also possible to obtain formulas that directly relate v�‘ to vþp from our formulation by sim-
ply multiplying out (24), i.e., vþ‘ ¼ ~sð2;2Þ‘þ1 ~sð2;2Þ‘þ2 . . . ~sð2;2Þp vþp and v�‘ ¼ sð1;2Þ‘

~sð2;2Þ‘þ1 ~sð2;2Þ‘þ2 . . . ~sð2;2Þp

� �
vþp , where ~sð2;2Þ‘þ1 ¼ sð2;2Þ‘þ1 =sð2;2Þ‘ .

6. Conserved quantities

In the case of the RHM, the time-averaged complex Poynting theorem for harmonic fields is given by
r � Sþ Q ðeÞ þ Q ðmÞ þ 2ix uðeÞ � uðmÞ
� �

¼ 0; ð25aÞ
where S ¼ 1
2 E�H� is the complex Poynting vector and
uðeÞ ¼ �
0

4
E � E� ¼ �

0

4
kEk2

; ð25bÞ

uðmÞ ¼ l0

4
H �H� ¼ l0

4
kHk2

; ð25cÞ

Q ðeÞ ¼ x�00

2
E � E� ¼ x�00

2
kEk2

; ð25dÞ

Q ðmÞ ¼ xl00

2
H �H� ¼ xl00

2
kHk2

: ð25eÞ
In (25), u(e) is the real time-averaged electric density, u(m) is the real time-averaged magnetic density, Q(e) and Q(m) represent
time-averaged electric and magnetic losses, respectively (e.g., Joule heating [36, Section 2.19, Section 2.20]). Substituting the
total electric field and the total magnetic intensity into (25b) and (25c), respectively, yields
uðeÞ‘ ¼
�0‘
4

Eþ‘
�� ��2 þ E�‘

�� ��2 þ 2Re Eþ‘ � E
�
‘
�� �� �

; ð26aÞ

uðmÞ‘ ¼ l0‘
4

Hþ‘
�� ��2 þ H�‘

�� ��2 þ 2Re Hþ‘ �H
�
‘
�� �� �

; ð26bÞ
where Re denotes the real part.
In the case of the LHM, the complex Poynting theorem for harmonic fields given by (25) is mathematically correct. How-

ever, the identification of the real electric density (25b) and the real magnetic density (25c) is troublesome because both are
negative. It was pointed out by Veselago [20] that the LHM must be accompanied by frequency dispersion, in which case the
real electric density and the real magnetic density are not given by (25b) and (25c), respectively. Moreover, simultaneously
negative permittivity and permeability occur very near resonance and there is therefore no frequency interval for the LHM
where permittivity and permeability may be reasonably approximated by a constant. For a more detailed discussion see
[23,37,38].

Another conserved quantity is the fundamental invariant in multilayers (FIM) [39,40], given by
w‘þ1 w‘þ1vþ‘þ1

� �2 � w�1
‘þ1v

�
‘þ1

� �2
h i

¼ w‘ vþ‘
� �2 � v�‘

� �2
h i

; ð27Þ
for ‘ = 0, . . . ,p � 1. The FIM is a product of the continuity conditions for the electric field (14a) and magnetic intensity (14b).
However, the FIM is not an energy conservation statement because it contains v�‘

� �2 and v�‘þ1

� �2 instead of v�‘
�� ��2 and v�‘þ1

�� ��2.
In our view, the FIM is particularly interesting because its structure is similar to that of the space-time interval of special
relativity, ds2 = d x2 � c2dt2, where c is the speed of light. Moreover, it has been pointed out in [41] that many results asso-
ciated with wave propagation through planar stratified media are more easily derived through an analogy with special rel-
ativity. In this paper, we don’t pursue the analogy between wave propagation though a multilayer stack and the theory of
special relativity any further, but we do want to stress that this analogy is not a mere coincidence.

6.1. Energy densities for parallel polarization

It is convenient to introduce a new symbol for the transverse component (the y-component) of the electric field as a func-
tion of distance, x, into the multilayer stack. For ‘ = 0, . . . ,p, let
C�‘ ðxÞ ¼ �kx;‘E
�
‘ exp½�ikx;‘x�; ð28Þ
then,
C�‘ ðxÞ
�� ��2 ¼ jkx;‘j2 E�‘

�� ��2 exp 
2Im½kx;‘�xð Þ;
Re Cþ‘ ðxÞC

�
‘
�ðxÞ

� �
¼ �jkx;‘j2Re Eþ‘ E�‘

�eþ2iRe½kx;‘ �x
� �

:
ð29Þ
Substituting (12) into (26a) and using (29) to simplify the result yields
uðeÞ‘ ðxÞ ¼
�0‘
4

1þ
k2

y;p

jkx;‘j2

 !
Cþ‘ ðxÞ
�� ��2 þ C�‘ ðxÞ

�� ��2� �
þ 2 1�

k2
y;p

jkx;‘j2

 !
Re Cþ‘ ðxÞC

�
‘
�ðxÞ

� �" #
: ð30Þ
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Substituting (11) into (26b) and using (29) to simplify the result yields
uðmÞ‘ ðxÞ ¼
l0‘jw‘j2

4
Cþ‘ ðxÞ
�� ��2 þ C�‘ ðxÞ

�� ��2 � 2Re Cþ‘ ðxÞC
�
‘
�ðxÞ

� �� �
; ð31Þ
where w‘ is given by (15).

6.2. Energy densities for perpendicular polarization

Again, it is convenient to introduce a new symbol for the transverse component (the z-component) of the electric field as
a function of distance, x, into the multilayer stack. For ‘ = 0, . . . ,p, let
C�‘ ðxÞ ¼ E�‘ exp �ikx;‘x½ �; ð32Þ
then,
C�‘ ðxÞ
�� ��2 ¼ E�‘

�� ��2 exp 
2Im½kx;‘�xð Þ;
Re Cþ‘ ðxÞC

�
‘
�ðxÞ

� �
¼ Re Eþ‘ E�‘

�eþ2iRe½kx;‘ �x
� �

:
ð33Þ
Substituting (16) into (26a) and using (33) to simplify the result yields
uðeÞ‘ ðxÞ ¼
�0‘
4

Cþ‘ ðxÞ
�� ��2 þ C�‘ ðxÞ

�� ��2 þ 2Re Cþ‘ ðxÞC
�
‘
�ðxÞ

� �h i
: ð34Þ
Substituting (17) into (26b) and using (33) to simplify the result yields
uðmÞ‘ ðxÞ ¼
l0‘jw‘j2

4
1þ

k2
y;p

jkx;‘j2

 !
Cþ‘ ðxÞ
�� ��2 þ C�‘ ðxÞ

�� ��2� �
� 2 1�

k2
y;p

jkx;‘j2

 !
Re Cþ‘ ðxÞC

�
‘
�ðxÞ

� �" #
; ð35Þ
where w‘ is given by (19).

7. Transmission and reflection coefficients

The transmission coefficient, T, and the reflection coefficient, R, are given by
T ¼
Re Sþ0
� �

� x̂
Re Sþp
h i

� x̂
; ð36aÞ

R ¼ �
Re S�p
h i

� x̂

Re Sþp
h i

� x̂
; ð36bÞ
with
Sþ0 ¼
1
2

Eþ0 �Hþ0
� and S�p ¼

1
2

E�p �H�p
�
;

where it is understood that E�p and H�p
�

are evaluated at the interface between regions p and p � 1 (the interface is ap-
proached from region p), and Eþ0 and Hþ0

� are evaluated at the interface between regions 1 and 0 (the interface is approached
from the 0th region).

In the case of the parallel polarization state, substituting (11) and (12) into (36), and using (13) to simplify the result,
yields
T ¼ kx;p

�p

Re ��0kx;0
� �
jkx;0j2

vþ0
vþp

�����
�����

2

; ð37aÞ

R ¼
v�p
vþp

�����
�����
2

: ð37bÞ
In the case of the perpendicular polarization state, substituting (17) and (16) into (36), and using (18) to simplify the re-
sult, yields
T ¼
lp

kx;p
Re

k�x;0
l�0

" #
vþ0
vþp

�����
�����

2

; ð38aÞ

R ¼
v�p
vþp

�����
�����
2

: ð38bÞ



Table 1
The first column contains the name (as it appears in the code) of the object attribute (method) of the class Layer, the second column contains a description of
the method, and the third column contains references to the section where a more detailed description may be found.

Name Description Refs.

field Transverse component of the electric field as a function of distance, C±(x) 6.1, 6.2
energy Electric/magnetic energy density as a function of distance, u(e,m)(x) 6.1, 6.2
loss Electric/magnetic losses as a function of distance, Q(e,m)(x) 6
divPoynting Divergence of the Poynting vector as a function of distance, r � S(x) 6
FIM FIM at each boundary interface 6
FIMvsDist FIM as a function of distance 6
TRvsFreq Transmission and reflection coefficients as a function of frequency f = x/2p and/or angle of incidence /,

i.e., {T(f),R(f)}, {T(/),R(/)}, {T(f,/),R(f,/)}
7

TRvsAngle

TRvsFreqAndAngle

Table 2
The first column contains the name (as it appears in the code) of the object attribute of the class Boundary, the second column contains a description of the
attribute, and the third column contains references to a section and/or equation where a more detailed description of the attribute may be found.

Name Description Refs.

self.h Thickness of each layer, h‘ (13), (18)
self.epsRel Relative permittivity of each region, �‘/�vacuum Section 3
self.muRel Relative permeability of each region, l‘/lvacuum Section 3
self.pol Polarization state Section 4
self.kx x-component of the wavevector, kx,‘ (8)
self.w Scaled self.kx (polarization dependent), w‘ (15), (19)
self.chiPlus Transverse component of the electric field evaluated on the interface, vþ‘ =vþp (13), (18)

self.chiMinus Transverse component of the electric field evaluated on the interface, v�‘ =vþp (13), (18)
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The transmission and reflection coefficients, given by (37) for the parallel polarization state and by (38) for the perpen-
dicular polarization state, are valid for both a right- and a left-handed material.
8. Multilayer classes

Python is a multi-paradigm programing language that supports object-oriented programing, structured programing, and
a subset of functional and aspect-oriented programing styles. There is a large number of numerical libraries available for use
with Python. We chose to use a numerical library called SciPy [42] for numerical computations because, in our opinion, a
reader familiar with MATLAB™ and/or Fortran 90/95 will find SciPy a very natural and easy-to-use library.

In order for our multilayer classes, namely Boundary and Layer, which are collectively called openTMM,4 to be as useful
as possible to the scientific community, we paid particular attention to the readability, usability, and maintainability of the
code. Both classes are implemented in an object-oriented programing style as described below.

The Boundary class is meant to be a base class (superclass in the Python lexicon) that will be inherited by the derived
classes (subclasses in the Python lexicon). The derived classes perform ‘‘high-level’’ computations such as computing the en-
ergy density and the transmission and reflection coefficients. The derived Layer class inherits the Boundary and computes
the quantities described in Table 1. The benefit of using inheritance in our multilayer calculations is that other developers
may extend the Layer class or write their own derived class to compute the desired quantity of interest without having to
implement the low-level code, e.g., the code for computing kx,‘ and the S-matrix. The Boundary superclass computes a ‘‘min-
imal’’ set of ‘‘basic’’ quantities, see Table 2, that are used by the Layer subclass. Each function/method in the Boundary and
Layer class contains a documentation header (docstring in the Python lexicon), which describes the function/method in de-
tail and includes an example of its use. To access the docstrings, the user may use Python’s help function or if more user
friendly formatting is desired, the user may use SciPy’s info function. For example, the docsting for Layer.energy function
may be accessed via.

>>> help(openTMM.Layer.energy)

>>> scipy.info(openTMM.Layer.energy)

and all docstings contained in a class may be accessed via

>>> help(openTMM.ClassName)

>>> scipy.info(openTMM.ClassName)
4
openTMM is an open-source software distributed under the MIT license and is available from http://pypi.python.org/pypi/openTMM.

http://pypi.python.org/pypi/openTMM
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where ClassName is either Boundary or Layer. This interactive documentation feature of Python makes it a very conve-
nient language to use and largely eliminates the need to produce separate code documentation. The help/scipy.info

functions are similar to the Manual pager utils (man pages) of Unix-like operating systems; could one imagine using a Linux
shell without man python?
9. Python and numerical efficiency

There is some concern about the speed of computations in Python because it is byte-compiled, not a compiled language
such as Fortran 90/95 or C/C++. However, in our opinion, the code readability (less error-prone syntax), flexibility (effort-
less integration with other software) and ease-of-use of Python (leading to shorter development times) in many cases out-
weigh any performance benefits of compiled languages. An interested reader may consult [43–46] for a fuller discussion of
why Python is a language of choice for scientific software development. Typically, computationally intensive routines in
Python are implemented in compiled languages and therefore, the difference in computation time between Python and
complied languages is acceptable for many applications [44–47]. In the Python lexicon, the mixing of programing lan-
guages is called the Pythonic approach; this is the approach we use with the computationally intensive part of the Bound-

ary superclass.
It is relatively obvious that the computationally intensive part of the Boundary superclass is the computation of v�‘ , i.e.,

the solution of the linear system described in Section 5. Therefore, the computation of v�‘ is implemented in Fortran 90 and
the Python bindings are built by F2PY [48] (F2PY is now part of SciPy). However, implementing ‘‘workhorse functions’’ in a
compiled language reduces the readability and maintainability of code to some extent. Therefore, we strongly encourage
developers to only implement workhorse functions in compiled languages when they lead to severe bottlenecks. It is often
the case that bottlenecks can only be identified after code profiling (performance analysis). For example, it is not obvious that
the square root function in the computation of kx,‘ is relatively time-consuming. The computation of kx,‘ is relatively expen-
sive because SciPy’s square root function, scipy.sqrt, does an element-by-element analysis of the input array to find if it
contains any real elements less than zero. If a real, less-than-zero element is found, SciPy converts the whole input array to a
complex data type and passes it to NumPy [49], which uses an efficient C code to compute the square root. In our case, SciPy’s
time-consuming element-by-element analysis is unnecessary because of a priori knowledge about kx,‘, see Section 3. We
could avoid scipy.sqrt by directly using NumPy’s square root function, but this is not the most convenient approach be-
cause NumPy’s square root function of a complex number z = jzjeih returns

ffiffiffiffiffi
jzj

p
eih=2, where � p < h 6 p, but (8) requires that

Im[kx,‘] > 0. To avoid this inconvenience, we choose to implement our own square root subroutine, cmplx_sqrt, which re-
turns the square root in an appropriate quadrant as required by (8). The cmplx_sqrt is implemented in Fortran 90 with
Python binding build by F2PY and depends on Fortran’s intrinsic square root function, SQRT.

To confirm that the run-time of the Python Boundary superclass is acceptable, we compared it to a Boundary class
implemented in pure Fortran 90. From Fig. 2, we see that for a large number of layers ( J 300) the Python code is only
25 percent slower than the pure Fortran 90 code. However, for a small number of layers ([20) the Python code is about
10 times slower than the pure Fortran 90 code, see inset in Fig. 2, but this is not major concern because such a small number
of layers has an absolute execution time about a second or so in Python. We believe that the run-time discrepancy between a
small and a large number of layers is caused by SciPy’s overhead cost, which does not increase significantly as a function of
array size.
Fig. 2. The ratio of total computational time required to compute T(fi,/j) and R(fi,/j), where 1 6 {i, j} 6 103, using openTMM and a pure Fortran 90 code. Each
multilayer stack is composed of the same number of pseudorandom layers of the following types: right-handed layers with/without absorption and left-
handed layers with/without absorption.



Fig. 3. d~v is shown for a multilayer stack composed of the same number of pseudorandom layers of the following types: right-handed layers with/without
absorption and left-handed layers with/without absorption.
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10. Numerical stability and accuracy

To demonstrate the numerical stability and accuracy of openTMM, we numerically checked the complex Poynting theorem
given by (25a), the fundamental invariant in multilayers given by (27), and the de Hoop reciprocity theorem [50, Section 6].
The de Hoop reciprocity theorem states that if �0 = �p and l0 = lp, then the transmitted wave is unaffected by a 180 degree
rotation of the multilayer stack around the z-axis, see Fig. 1. We measure the accuracy of a computed quantity in terms of the
number of significant digits it agrees with the theoretical value and we denote this measure of accuracy by dv. Approxi-
mately, dv is given by
Table 3
The hei
from th
A 500-l
layers w

Test

Poyn

de H
d~v �min � log
v � ~vRe

v

����
����;� log

v � ~v Im

v

����
����

� �
; ð39Þ
where v is the theoretical value and f~vRe; ~v Img are the numerically computed value. For a numerical check of the complex
Poynting theorem ~vRe is given as � Re[r � S]/[Q( e) + Q(m)] and ~v Im is given as � Im[r � S]/[2x(u(e) � u(m))]. For the FIM test,
~vReð~v ImÞ is the ratio of the the real (imaginary) part of the left-hand side to the real (imaginary) part of the right-hand side of

(27). For the de Hoop reciprocity test, ~vRe ¼ Re vþ0
� �

=Re vþp
h i

and ~v Im ¼ Im vþ0
� �

=Im vþp
h i

, where vþ0 is the transmitted wave be-

fore the 180 degree rotation of the multilayer stack and vþp is the transmitted wave after the rotation. For all three numerical
checks, v = 1 and all computations are performed in double-precision (�16 significant digits). From Fig. 3, we see that the
three numerical checks are satisfied with an accuracy of d~v P 12. Despite the fact that some of the layers in the stack chosen
for Fig. 3 have very high absorption, Im[kx,‘ h‘] � 30, we see that d~v does not decrease as a function of distance into the stack,
which confirms that our S-matrix algorithm is indeed numerically stable. The composition of the multilayer stack is summa-
rized in Table 3. To produce Fig. 3, we used a normally incident plane wave of frequency 100 GHz and the first pathological
case scheme, see Section 3.2.
ght, h, relative permittivity, �rel, and the relative permeability, lrel, of each layer were pseudorandomly chosen from the intervals shown in the table. E.g.,
e second line of the table, we see that 125 layers have thickness between 1 mm and 10 mm, and relative permittivity/permeability between �10 and �1.
ayer stack was used for the Poynting theorem and the FIM test. For the de Hoop reciprocity theorem test, a multilayer stack consisting of 5,9,13, . . . ,501

as used.

# of layers h(mm) �0rel �00rel l0rel l00rel

ting theorrem & FIM 125 [1,10] [1,10] 0 [1,10] 0
125 [1,10] [�10,�1] 0 [�10,�1] 0
125 [1,10] [�10,�1] [0.01,0.1] [�10,�1] 0
115 [1,10] [1,10] 0 [1,10] [0.01,0.1]
10 [10,15] [2,10] [0,2] [1,10] 0

oop theorem {1, . . . ,125} [1,10] [1,10] 0 [1,10] 0
{1, . . . ,125} [1,10] [�10,�1] 0 [�10,�1] 0
{1, . . . ,125} [1,10] [�10,�1] [0.01,0.1] [�10,�1] 0
{1, . . . ,125} [1,10] [1,10] 0 [1,10] [0.01,0.1]
1 [1,10] [2,10] [0,1] [1,10] 0
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11. Conclusions

A numerically stable S-matrix algorithm for electromagnetic wave propagation through planar stratified media composed
of a right-handed and/or left-handed material has been implemented in Python. Pathological cases caused by an unphysical
approximation of zero absorption have been carefully examined and numerically circumvented (see Section 3.2). The numer-
ical computations were implemented in an object-oriented programing style by dividing them into two classes, Boundary
and Layer. The Boundary class performs computationally intensive calculations, namely the solution of the linear system
described in Section 5.1 and the square root of k2

x;‘. The workhorse functions of the Boundary class were implemented in
Fortran 90 in order to avoid computational bottlenecks. The Layer class performs high-level calculations, such as calculation
of u(e,m)(x), Q(e,m)(x), C±(x), and FIM. The code has been tested and is accurate to � 12 significant digits (see Section 10).

We hope that our open-source and object-oriented implementation of the S-matrix algorithm, which is suitable for mod-
ern applications such as Anderson localization of light and perfect lensing, will be adopted by a wide scientific community.
At the very least, we hope that our publicly available implementation of the S-matrix algorithm will encourage the scientific
community to use open-source software, thus increasing the reproducibility of scientific work.
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