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A new integral equation method for direct electromagnetic
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and its numerical confirmation
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In this paper, we derive a new integral equation method for direct electromagnetic scattering in homo-
geneous media and present a numerical confirmation of the new method via a computer simulation.
The new integral equation method is based on a paper written by DeSanto [1], originally for scattering
from an infinite rough surface separating homogeneous dielectric half-spaces. Here, it is applied to
a bounded scatterer, which can be an ohmic conductor or a dielectric, with some simplification of
the continuity conditions for the fields. The new integral equation method is developed by choosing
the electric field and its normal derivative as boundary unknowns, which are not the usual boundary
unknowns. The new integral equation method may provide significant computational advantages over
the standard Stratton–Chu method [2] because it leads to a 50% sparse, rather than 100% dense,
impedance (collocation) matrix. Our theoretical development of the new integral equation method is
exact.

1. Introduction

Three-dimensional space is divided into two regions. Each region has a constant permittivity
and permeability; in general, these values may be complex. Region two, the scatterer, is
bounded by a smooth surface given by

S±(x, y) =
{

S+(x, y) if z ≥ 0
S−(x, y) if z ≤ 0,

(1)

where the domain of S±(x, y) is a disk with radius ro in the z = 0 plane. The non-unit normal
to the surface defined by (1) is given by

n±(x, y) =
{

n+(x, y) if z ≥ 0
n−(x, y) if z ≤ 0,

(2)

where n+
i (x, y) = ∂i (z−S+(x, y)) and n−

i (x, y) = ∂i (S−(x, y)−z). Throughout this paper, we
will use index notation and the SI unit system, and we will assume that all fields are harmonic
in time with a exp(−iωt) time factor, where ω is the angular frequency. By index notation,
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we mean that every index letter appearing as a repeated subscript in one term indicates a
summation from one to three. If the subscript also contains the letter t (transverse), then the
summation is from one to two. Every component of the electric field in region two and every
component of the scattered electric field in region one satisfies the Helmholtz equation(

∂ ′
j∂

′
j + k2

R

)
E (R)

i (x′) = 0, (3)

where x′ = (x ′, y′, z′), R is the region number (R = 1, 2), and k is a complex wavenumber. The
imaginary part of k is chosen such that Im(k) ≥ 0. In order to obtain an integral representation
of the fields, we define two functions. The first function G(R)(x, x′) is termed a free-space
Green’s function. It satisfies(

∂ ′
j∂

′
j + k2

R

)
G(R)(x, x′) = −δ(x′ − x), (4)

where δ(x′−x) is the Dirac delta function. The free-space Green’s function is known explicitly
to be

G(R)(x, x′) = exp
(
ikR|x − x′|)

4π |x − x′| , (5)

where |x − x′| denotes the magnitude of x − x′. The second function, �(R)(x′), is termed the
characteristic function and is defined by

�(R)(x′) =
{

1 if x′ ∈ region R
0 if x′ /∈ region R.

(6)

The characteristic functions for regions two and one are explicitly given by

�(2)(x′) = �(ro − r ′)�(S+(x ′, y′) − z′)�(z′ − S−(x ′, y′)), (7)

�(1)(x′) = 1 − �(2)(x′), (8)

where r ′ =
√

x ′2 + y′2. To obtain an integral representation of the fields, we multiply (3)
by G(R)(x, x′) and (4) by E (R)

i (x′), then take the difference between the two equations and
multiply it by the characteristic function for region R. Then, we integrate the result over all
space with respect to the primed coordinates. This yields

E (R)
i (x)�(R)(x) = −

∫ [
G(R)(x, x′)∂ ′

j E (R)
i (x′) − E (R)

i (x′)∂ ′
j G

(R)(x, x′)
]
∂ ′

j�
(R)(x′) dx′, (9)

where the terms integrated by parts vanish because the characteristic function vanishes outside
region R. The total field in region one is composed of the incident field and the scattered field.
The scattered field satisfies the Helmholtz equation and the Silver–Müller radiation condition
[3]; thus, any integral over a surface at infinity will vanish. The total field in region one can
be written as

E(1) = E(s) + E(inc), (10)

where E(s) is the scattered electric field and E(inc) is the incident electric field. Writing (9) for
E(s) (with R = 1) and using (10), and then integrating the result with respect to z′ yields(

E (inc)
i (x) − E (1)

i (x)
)
�(1)(x) + W (inc)

i (x)

=
∫ [

G(1)(x, x′
S+ )n+

j ∂ ′
j E (1)

i − E (1)
i n+

j ∂ ′
j G

(1)(x, x′
S+ )

]
�(�) dx′

i t

+
∫ [

G(1)(x, x′
S− )n−

j ∂ ′
j E (1)

i − E (s)
i n−

j ∂ ′
j G

(1)(x, x′
S− )

]
�(�) dx′

i t , (11)
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where x′
S± = (x ′, y′, S±(x ′, y′)), � = ro − r ′, and W (inc)

i (x) is given by

W (inc)
i (x) =

∫ [
G(1)(x, x′

S+ )n+
j ∂ ′

j E (inc)
i − E (inc)

i n+
j ∂ ′

j G
(1)(x, x′

S+ )
]
�(�) dx′

i t

+
∫ [

G(1)(x, x′
S− )n−

j ∂ ′
j E (inc)

i − E (inc)
i n−

j ∂ ′
j G

(1)(x, x′
S− )

]
�(�) dx′

i t . (12)

Writing (9) for E(2) (with R = 2) and integrating the result with respect to z′ yields

E (2)
i (x)�(2)(x) =

∫ [
G(2)(x, x′

S+ )n+
j ∂ ′

j E (2)
i − E (2)

i n+
j ∂ ′

j G
(2)(x, x′

S+ )
]
�(�) dx′

i t

+
∫ [

G(2)(x, x′
S− )n−

j ∂ ′
j E (2)

i − E (2)
i n−

j ∂ ′
j G

(2)(x, x′
S− )

]
�(�) dx′

i t . (13)

The integral representation of the fields given by (11) and (13) may be used to compute
the electric fields in regions one and two, respectively, once the electric field and its normal
derivative are known on the surface. In order to form six scalar coupled linear integral equations
from (11) and (13) that can be solved numerically once appropriate boundary conditions are
chosen, we let the field point x approach the surface. It is well known that the Green’s function
and its normal derivative are singular when the field point coincides with the source point,
x′

S± . The singularity of the Green’s function can be integrated to obtain 0, and the singularity
of the normal derivative of the Green’s function can be integrated to obtain ±1/2. The value
+1/2 is obtained if we approach the surface from the region into which the normal points,
and −1/2 is obtained if we approach the surface from the region opposite that into which the
normal points. In the limit as x approaches the surface from region one, (11) yields

1

2

(
E (inc)

i (xS± ) − E (1)
i (xS± )

)

= −
∫ [

G(1)(xS± , x′
S+ )n+

j ∂ ′
j E (1)

i − E (1)
i n+

j ∂ ′
j G

(1)(xS± , x′
S+ )

]
�(�) dx′

i t

+ −
∫ [

G(1)(xS± , x′
S− )n−

j ∂ ′
j E (1)

i − E (1)
i n−

j ∂ ′
j G

(1)(xS± , x′
S− )

]
�(�) dx′

i t , (14)

where −
∫

denotes the Cauchy principal value integral. In the derivation of (14), we have used
the fact that

lim
x→xS±

W (inc)
i (x) = −1

2
E (inc)

i (xS± )

if E(inc)
i satisfies the Helmholtz equation. In the limit as x approaches the surface from region

two, (13) yields

1

2
E (2)

i (xS± ) = −
∫ [

G(2)(xS± , x′
S+ )n+

j ∂ ′
j E (2)

i − E (2)
i n+

j ∂ ′
j G

(2)(xS± , x′
S+ )

]
�(�) dx′

i t

+ −
∫ [

G(2)(xS± , x′
S− )n−

j ∂ ′
j E (2)

i − E (2)
i n−

j ∂ ′
j G

(2)(xS± , x′
S− )

]
�(�) dx′

i t . (15)

2. New boundary unknowns

We wish to choose the electric field and its normal derivative as the boundary unknowns. In
order to choose these boundary unknowns, we must have continuity conditions for the electric
field and its normal derivative. These continuity conditions were first derived by DeSanto
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[1] for an uncharged dielectric scatterer. In appendix A, we generalize DeSanto’s continuity
conditions for uncharged ohmic conductors with finite conductivities. Substituting (45) into
(15) and integrating any transverse terms by parts yields

1

2
E (2)

i (xS± ) = −
∫

µG(2)n+
j ∂ ′

j E (1)
i �(�) dx′

i t + −
∫ [ − E (2)

i n+
j ∂ ′

j G
(2) + (

µE (1)
j − E (2)

j

)

× ∂ ′
i t

{
n+

j G(2)
} + (

E (2)
pt − µE (1)

pt

)
∂ ′

pt

{
n+

i G(2)
}]

�(�) dx′
i t

+ −
∫

µG(2)n−
j ∂ ′

j E (1)
i �(�) dx′

i t + −
∫ [ − E (2)

i n−
j ∂ ′

j G
(2) + (

µE (1)
j − E (2)

j

)

× ∂ ′
i t

{
n−

j G(2)
} + (

E (2)
pt − µE (1)

pt

)
∂ ′

pt

{
n−

i G(2)
}]

�(�) dx′
i t , (16)

where µ = µ2/µ1 and curly brackets, { }, indicate that the contained function has been set on
the surface, S±. It is understood that a function inside of curly brackets is to be differentiated
as a function of only x ′ and y′. The terms in square brackets, [ ], in (16) can be simplified by
using identities given by

∂ ′
pt

{
n±

� G(2)
} = ∂ ′

pt

(
n±

� G(2)
) ∓ n±

pt∂
′
3

(
n±

� G(2)
)

= n±
� ∂ ′

pt G
(2) + G(2)∂ ′

pt n
±
� ∓ n±

pt n
±
� ∂ ′

3G(2), (17)

∂ ′
i t n

±
pt = ∂ ′

pt n
±
i if ∂ ′

1∂
′
2S± = ∂ ′

2∂
′
1S±, (18)

and

E (R)
j G(2)∂ ′

i t n
±
j = E (R)

pt G(2)∂ ′
pt n

±
i . (19)

Figure 1. The impedance matrix for the new integral equation method is shown. The black squares represent non-
zero block matrices and the white squares represent zero block matrices.
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Figure 2. Each corner of each rectangle is defined by ri = ro sin( π i
2n ) for 0 ≤ i ≤ n and φ j = 2π j

mi
for 0 ≤ j ≤ m�,

where n = 	 πro p
2λ


, m� = 	 π (r�+1+r�)p
λ


 for 0 ≤ � < n, λ is the incident wavelength, and p is some integer. For the
mesh shown above, ro = 1, λ = 2π , p = 10, and N� = 20, where N� denotes the number of rectangles.

Using identities (17)–(19) to simplify the terms in the square brackets in (16) yields

− E (2)
i n±

j ∂ ′
j G

(2) + n±
i E (2)

j ∂ ′
j G

(2) − n±
j E (2)

j ∂ ′
i G

(2)

+ µ
(
n±

j E (1)
j ∂ ′

i G
(2) − n±

i E (1)
j ∂ ′

j G
(2)

)
. (20)

Substituting (31) into (20) and simplifying the result yields

−E (1)
i n±

j ∂ ′
j G

(2) + (µ − ε−1)n±
j E (1)

j ∂ ′
i G

(2) + (1 − µ)n±
i E (1)

j ∂ ′
j G

(2), (21)

Figure 3. Case 1: kinc R = 1, ε = 4, µ = 1, and the scatterer is a sphere. 1418 surface patches were used to obtain
the JDAY solution.
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Figure 4. Case 2: kinc R = 1, ε = 2, µ = 2, and the scatterer is a sphere. 1418 surface patches were used to obtain
the JDAY solution. Notice that both solutions satisfy Weston’s theorem, see ‘zoomed-in’ plot.

where ε = ε2/ε1. Finally, substituting (21) and (31) into (16) yields

1

2
Ci j E (1)

j (xS± ) = −
∫ [

µG(2)n+
j ∂ ′

j E (1)
i − E (1)

i n+
j ∂ ′

j G
(2)

]
�(�) dx′

i t

+ −
∫ [

(µ − ε−1)n+
j E (1)

j ∂ ′
i G

(2) + (1 − µ)n+
i E (1)

j ∂ ′
j G

(2)
]
�(�) dx′

i t

+ −
∫ [

µG(2)n−
j ∂ ′

j E (1)
i − E (1)

i n−
j ∂ ′

j G
(2)

]
�(�) dx′

i t

+ −
∫ [

(µ − ε−1)n−
j E (1)

j ∂ ′
i G

(2) + (1 − µ)n−
i E (1)

j ∂ ′
j G

(2)
]
�(�) dx′

i t , (22)

where the arguments of the functions have been omitted to conserve space. Equations (14) and
(22) form a system of six coupled linear integral equations, where the electric field, E(1), and
its normal derivative, n±

j ∂ ′
j E (1)

i , are the boundary unknowns. This system of coupled linear
integral equations can be written in matrix form as

Ai j f j = gi 1 ≤ i, j ≤ 12, (23)

Figure 5. Case 3: kinc R = 1, ε = 1, µ = 4, and the scatterer is a sphere. 1418 surface patches were used to obtain
the JDAY solution.
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Figure 6. Case 4: kinc R = 1, ε = 1 + 4i, µ = 1, and the scatterer is a sphere. 1418 surface patches were used to
obtain the JDAY solution.

where Ai j is the impedance matrix, f j is the unknown column vector, and gi is the known col-
umn vector that contains the incident electric field. Moreover, the upper-half of the impedance
matrix is generated from (14), and the lower-half of the impedance matrix is generated from
(22). The upper-half of the unknown column vector, f j , contains the electric field, and the
lower-half contains the normal derivative of the electric field. The impedance matrix is shown
in figure 1, where the white squares are the zero block matrices and the black squares are the
non-zero block matrices. The upper-left-quadrant, the upper-right-quadrant, and the lower-
right-quadrant of the impedance matrix are ‘diagonal’ and sparse in structure. The overall
sparsity of the impedance matrix is 50%. The sparsity and the structure of the impedance
matrix may provide a significant computational advantage over the standard Stratton–Chu
integral equation method [2, 4, 5] because its corresponding impedance matrix is 100% dense.

3. Numerical results

In order to numerically confirm our new integral equation method, we have written a computer
program called JDAY1. JDAY is based on the discrete collocation method with pulse basis
functions. JDAY numerically solves our new integral equations, which are given by (14) and
(22) for the new boundary unknowns, i.e. the electric field and its normal derivative. Equations
(14) and (22) are transformed into a cylindrical coordinate system via x = r cos φ, y = r sin φ,
and z = z, where φ is the azimuthal angle. An adaptive rectangular mesh is introduced for the
domain of the surface, see figure 2. Each component of the electric field and its normal deriva-
tive is assumed to be constant over each rectangle. JDAY numerically computes the surface
integrals that are contained in (14) and (22) by setting the observation point at the centroid of
each rectangle. After all the surface integrals have been computed, JDAY forms a linear system
of algebraic equations that it solves for the boundary unknowns using an iterative method.
The iterative method used by JDAY is called the Generalized Minimum Residual method,
which was provided by Numerical Algorithms Group Ltd. Once the boundary unknowns are
found, JDAY uses them to compute the scattered field in region one by numerically evaluating
(11).

1 JDAY is available from the authors free of charge under the BSD license.
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We ran JDAY for six different cases. In each case, the incident wave is given by

E(inc) = (ei(kincz−ωt), 0, 0), (24)

where kinc = √
ε1µ1ω, ω = 1, ε1 = 1, and µ1 = 1. In cases one to four, we plotted the radar

cross-section (RCS) in the xz-plane vs. the scattering angle, θscat, and compared the result to
the Mie series solution obtained using MATLABTM functions provided by Mätzler [6]. We
define the RCS by

RCS = 4π R2
∞

Es
i Es

i

E inc
i E inc

i

, (25)

where ¯ denotes the complex conjugate and R∞ is taken to be 16 incident wavelengths away
from the centre of the scatterer, which is a sphere with radius R. Case one, where electric size
parameter kinc R = 1, ε = 4, µ = 1 is shown in figure 3. Figure 3 illustrates that the solution
obtained via JDAY is in good agreement with the Mie series solution, especially for non-
forward scattering, i.e. θscat 
= 0◦. Case two, where electric size parameter kinc R = 1, ε = 2,
µ = 2 is shown in figure 4. Figure 4 illustrates that the solution obtained via JDAY is in good
agreement with the Mie series solution and that both the JDAY and Mie series solutions satisfy

Figure 7. Case 5: ε = 2, µ = 2. In figure 7(a) and 7(b), RCSback is plotted as a function of distance, measured in
numbers of incident wavelengths, from the lowest surface point; i.e. (0, 0, 0.2). 2N� surface patches were used to
obtain the JDAY solution. The scattering surface is shown in figure 7(a).
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Weston’s theorem [7]. For the reader’s convenience, we state Weston’s theorem here without
proof.

THEOREM 1 If a plane electromagnetic wave is incident upon a body comprised of material
such that ε = µ, then the far zone back-scattered field is zero, provided that the direction of
incident propagation is parallel to an axis of the body about which a rotation of 90◦ leaves
the shape of the body together with its material medium invariant.

Case three, where electric size parameter kinc R = 1, ε = 1, µ = 4 is shown in figure 5. Case
four, where electric size parameter kinc R = 1, ε = 1 + 4i, µ = 1 is shown in figure 6. In
cases three and four, the JDAY solution agrees well with the Mie series solution. In cases five
and six, we plotted the back-scattered (θscat = 180◦) radar cross-sections RCSback vs. distance
away from the scatterer, where RCSback is given by

RCSback = 4π z2 Es
i Es

i

E inc
i E inc

i

. (26)

Figure 8. Case 6: ε = 2, µ = 2. In figure 8(a) and 8(b), RCSback is plotted as a function of distance, measured in
numbers of incident wavelengths, from point A, see figure 8(a). 2N� surface patches were used to obtain the JDAY
solution. The scattering surface is shown in figure 8(a).
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Case five, where ε = 2, µ = 2, and the scattering surface is given by

S± = ±0.2
√

1 − r2, (27)

is shown in figure 7. Figure 7 illustrates the numerical convergence of the solution to the result
predicted by Weston’s theorem. In case six, ε = 2, µ = 2, and the scattering surface is given
by

S± = ±2[r4 sin2(2φ) + 0.1]
√

1 − r2. (28)

Notice that the surface given by (28) is not a surface of revolution; however, it does satisfy the
conditions of Weston’s theorem. Figure 8 illustrates the numerical convergence of the solution
to the result predicted by Weston’s theorem.

4. Conclusions

A new integral equation method for direct electromagnetic scattering in homogeneous media
was developed by choosing an electric field and its normal derivative as the boundary un-
knowns. In the derivation of the new integral equation method, we used a generalized version
of the continuity conditions for the electric field and its normal derivative that were originally
derived by DeSanto in [1]. The new integral equation method leads to an impedance (collo-
cation) matrix that is 50% sparse. The sparsity of the impedance matrix may offer significant
computational advantages over the standard Stratton–Chu integral equation method, which
leads to a 100% dense impedance (collocation) matrix.

JDAY, a computer program, was written in order to numerically confirm the validity of
the new integral equation method. By running several numerical simulations using JDAY,
we were able to confirm the validity of our new integral equation method for a number of
different surfaces. We hope that our new integral equation method will be adopted by the
electromagnetic community; we therefore offer the JDAY source code free of charge under
the BSD license.
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Appendix A: Continuity conditions

The usual continuity conditions for the electric field are given by

n± · ε2E(2) = n± · ε1E(1) (29)

n± × E(2) = n± × E(1), (30)

where the permittivity, ε, is a complex constant in the case of an uncharged ohmic conductor.
The algebraic linear system of four scalar equations given by (29) and (30) only has three
linear independent scalar equations. The system can be solved by using the Moore–Penrose
pseudo-inverse to obtain

E (2)
i = Ci j E (1)

j (31)

with

Ci j = δi j + (ε−1 − 1)n̂±
i n̂±

j , (32)

where ε = ε2/ε1, n̂± is a unit normal to S±, and δi j is the Kronecker delta function.
To derive the continuity condition for the normal derivative of the electric field, we make

use of the following usual boundary condition,

n± × H(2) = n± × H(1), (33)

and two Maxwell’s equations given by

∇ · (εE) = 0 (34)

∇ × E = iωµH, (35)

where the harmonic time factor and region number have been suppressed. Implicitly, (29) and
(33) state that there is no net surface charge on the scatterer [8]. Equation (34) even holds on
the surface of the scatterer because there is no excess surface charge. We form a vector-cross
product of (35) with n± to obtain

n±
j ∂ ′

j Ei (x′
S± ) = n±

j ∂ ′
i E j (x′

S± ) + iωµK ±
i , (36)

where K± = −n± × H±. It is clear that by ∂ ′
i E j (x′

S± ), we mean the following order of opera-
tions:

(1) Differentiate the electric field as a function of the source variable x′ off the surface.
(2) Evaluate the differentiated electric field on the surface, i.e. x′ → x′

S± .

We want to use the opposite order of operations:

(1) Evaluate the electric field on the surface S±(x ′, y′).
(2) Differentiate the electric field as a function defined on the surface, i.e. in terms of x ′ and y′.

It is clear that we cannot simply use the new order of operations. Thus, we must find a
relationship between the two different orders of operations. In order to eliminate a possible
source of confusion, we define the curly bracket notation

{E j } = E j (x
′, y′, S±(x ′, y′)). (37)

Thus, the transverse derivative of
{

E j
}

is given by

∂ ′
i t {E j } = {∂ ′

i t E j } + {∂ ′
3 E j }∂ ′

i t S±(x ′, y′). (38)
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Adding δi3{∂ ′
3 E j } to both sides of (38) yields

{∂ ′
i E j } = ∂ ′

i t {E j } ± n±
i {∂ ′

3 E j }. (39)

Rewriting (36) in the curly bracket notation and substituting (39) into it yields

n±
j {∂ ′

j Ei } = n±
j ∂ ′

i t {E j } ± n±
i n±

j

{
∂ ′

3 E j
} + iωµK ±

i . (40)

The first term on the right-hand side (RHS) of (40) can be integrated by parts because it
will appear in the surface integral. However, the second term on the RHS of (40) cannot
be integrated by parts, thus, we need to develop it further. To develop it, we substitute the
self-evident identity

{∂ ′
pt E pt } = ∂ ′

pt {E pt } ± n±
pt {∂ ′

3 E pt } (41)

into (34) to obtain

{∂ ′
3 E3} = −∂ ′

pt {E pt } ∓ n±
pt {∂ ′

3 E pt }. (42)

Writing n±
j {∂ ′

3 E j } explicitly and substituting (42) into it yields

n±
j {∂ ′

3 E j } = ∓∂ ′
pt {E pt }. (43)

Substituting (43) into (40) yields

n±
j

{
∂ ′

j Ei
} = n±

j ∂ ′
i t

{
E j

} − n±
i ∂ ′

pt

{
E pt

} + iωµK ±
i . (44)

Finally, writing (44) for regions one and two, then taking the difference between them and
using (33) yields

n±
j

{
∂ ′

j E (2)
i

} = µ
(
n±

j

{
∂ ′

j E (1)
i

} − n±
j ∂ ′

i t

{
E (1)

j

} + n±
i ∂ ′

pt

{
E (1)

pt

})
+ n±

j ∂ ′
i t

{
E (2)

j

} − n±
i ∂ ′

pt

{
E (2)

pt

}
, (45)

where µ = µ2/µ1. Observe that the last four terms on the RHS of (45) can be integrated by
parts when they appear in the surface integral. Once the terms are integrated by parts, only the
electric field and its normal derivative will appear in the integrand.

The derivation of (31) and (45) has been adapted from [1]. Please note that the first term
on the left-hand side of equation (61) on page 1299 in [1] should read n j {∂ j E (2)

i } and not
n j∂ j {E (2)

i }.


