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ABSTRACT

We develop a numerically stable algorithm for electromagnetic wave propagation through

planar stratified media. This algorithm is implemented in a modern programming language

and is suitable for the study of such applications as Anderson localization and perfect lens-

ing. Our algorithm remains numerically stable even in the presence of large absorption.

Furthermore, in the context of the linear response laws and causality, we analyze a vanish-

ing absorption approximation, which is commonly used in wave scattering problems. We

show that it is easy to violate causality in the frequency-domain by making the vanishing

absorption approximation.

We also develop an orders-of-scattering approximation, termed “screened cylindrical

void/core” (SCV) approximation, for wave scattering from a large host cylinder contain-

ing N eccentrically embedded core cylinders. The SCV approximation is developed via

separation of variables and a cluster T -matrix. We establish the limitations of the SCV

approximation and it is in good agreement with the numerically-exact solution. Fur-

thermore, we illustrate that the large host cylinder model with N cylindrical inclusions can

be used to theoretically and experimentally investigate strong multiple scattering effects in

random media, such as Anderson localization.
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CHAPTER 1

INTRODUCTION

It has over 150 years since James Clerk Maxwell published the much-celebrated equations

that now bear his name. He probably could not have imagined that, in the 21st century, his

equations would be utilized to study various wave scattering phenomena. The main goal of

this dissertation is to use Maxwell’s equations to design multiple scattering experiments that

can be realized in the Mesoscopic Physics Laboratory (MPL) at the Colorado School of Mines.

These modeled experiments not only need to be theoretically sound, but they also need to

be computationally and experimentally verifiable. At the MPL, we have the rare ability

to measure both the amplitude and the phase of electric fields at frequencies approaching

1 THz with the AB Millimetre millimeter/sub-millimeter Vector Network Analyzer (VNA),

see Figure 1.1. This unique ability allows us to study one of the most fascinating multiple

scattering phenomena, namely, the localization of electromagnetic waves. Fifty years after

the publication of Anderson’s seminal work [1], localization continues to be a thriving area

of research in theoretical and experimental physics [2–7].

Localization, a coherent multiple scattering effect, has been observed in a variety of

classical and quantum mechanical systems. To gain a pictorial understanding of how a

wave may become spatially localized, consider a wave, U (inc)(r), incident on a medium

composed of N identical and lossless scatterers randomly distributed in space. The total

wave, U (total)(r), is the sum of the incident and partially scattered waves, i.e., U (total)(r) =

U (inc)(r) +
∑N

i=1 U
(i)(r), where U (i)(r) is the wave scattered by the ith scatterer. These

waves may interfere constructively in some region of space (see Figure 1.2) and destructively

in other regions of space, thus localizing U (total)(r) in space.
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Figure 1.1: John A. Scales (top) and Philippe Goy (bottom) calibrating MPL’s AB Millime-
tre VNA, which Goy designed and build [8].

Figure 1.2: A schematic representation of constructive interference of three partially scat-
tered waves is shown. The scatterers are denoted by disks and the region of constructive
interference is highlighted.

1.1 One-Dimensional Scattering and Absorption Free Media

The first use of the VNA at the MPL was to study localization in planar stratified

media (see Figure 1.3) composed of 100 randomly shuffled quartz and Teflon layers [7]. In

the course of this study, it became apparent that the standard transfer matrix algorithm

[9–11] used to compute the electromagnetic field inside the multilayer stack is numerically

unstable. The root cause of the numerical instability is that the transfer matrix contains

2



exponentially increasing and decreasing terms when absorption is non zero. In Chapter 2, we

present a numerically stable algorithm for a multilayer stack, which we have developed and

implemented in a modern object-oriented programming language. Furthermore, we discuss

some pathological cases that arise in the limit of vanishing absorption. These cases are

important as they vividly demonstrate that there is no physical principle that can be used

to differentiate between a right-handed material and a left-handed material1 if absorption is

assumed to be zero.

Figure 1.3: The cross-sectional view of the planar stratified media (multilayer stack) is shown.

The common zero absorption approximation is further investigated in Chapter 3 from a

more general point of view. In particular, a connection between absorption and causality

(the effect cannot precede the cause) is established in the context of linear response laws.

Furthermore, through the use of the formal theory of tempered distributions, we estab-

lish significant differences between the frequency-domain and monochromatic time-domain

Maxwell equations. This is important because although all the scattering problems in this

dissertation are formulated in the frequency-domain, the actual VNA measurements are per-

formed in the time-domain with a monochromatic incident field. As shown in Chapter 3,

confusing the two domains leads to an apparent violation of causality.

1It is customary, but historically inaccurate, to attribute the first theoretical consideration of the left-handed
material to Veselago [12]. In fact, as Agranovich and Gartstein point out, such a material was theoretically
considered much earlier by Mandel’shtam, see [13, §2.1] and references therein.

3



1.2 Large Host Cylinder with Holes

At the MPL, we are currently fabricating a model of a millimeter-wave random medium

from a large cylinder of Teflon (ultra low-loss material) with approximately 5000 holes drilled

in a random pattern using a table-top three-axis CNC milling machine. The cylinder is

110 mm in length and has a diameter of 152.4 mm. The holes are 0.505 mm in diameter

and are separated by a distance of 0.101 mm, giving us roughly two/three scatterers per

wavelength, as required by the Ioffe–Regel criterion [14, §7.4.4] for localization. The holes

are large enough to allow for the possibility of placing an intensity detector in them, thereby

measuring
∣∣U (total)

∣∣2 inside the sample. Our model, shown in Figure 1.4, can be illuminated

from the side to make a two-dimensional system or from the end to study transverse localiza-

tion. Furthermore, by illuminating the sample from the side and putting it on a rotational

stage, we can generate essentially arbitrary realizations of the same random disorder. In this

dissertation, we will only consider illumination from the side; however, it is important to

realize that the above model is more versatile than considered here.

Figure 1.4: Artistic rendering (not to scale) of our millimeter-wave random medium model.
The holes are shown in a simple pattern for illustration purposes only.

4



In order to ensure that the VNA has enough sensitivity to detect the presence of such

small holes, we measured the total field in the forward direction as a function of distance

with and without one concentric hole. The results of this experiment are shown in Figure 1.5,

from which we clearly see that the VNA can unambiguously detect the presence of a small

hole inside a large Teflon cylinder.

Figure 1.5: The measured amplitude and phase of the total transmitted field at 160 GHz are
shown.

We believe that, in order to learn the most from the aforementioned experiments, it is

necessary to have a sound theoretical model for them. The theoretical model should be

realistic but computationally tractable, without many crude numerical approximations. It

is possible to model our ensemble of scatterers using integral equation methods [15–17] or

coupled-dipole methods [18, 19], but such methods are not computationally feasible because

they yield a linear system of equations that is too large. For example, it is common practice

to use supercomputers with the coupled-dipole method to model even a few scatterers of

wavelength size [19]. Instead, in Chapters 4–6, we have developed an orders-of-scattering

approximation based on separation of variables and a cluster T -matrix [20, 21] [22, §5.9] [23,

§7.11]. This development is done in stages, as described below.
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In Chapter 4, we develop an approximation, termed the screened cylindrical void/core

(SCV) approximation, for a large cylinder with one concentric hole. The SCV approximation

is first derived in a physically intuitive manner, and then in a mathematically rigorous man-

ner. In Chapter 5, the SCV approximation is extended to the case of a non-concentric hole

and we explicitly show that the SCV approximation can be viewed as an orders-of-scattering

approximation. Furthermore, the limitations of the SCV approximation are discussed and

demonstrated with explicit numerical examples. Finally, in Chapter 6, we generalize the SCV

approximation to N non-concentric holes inside the large cylinder via the cluster T -matrix

and suggest avenues for future research.
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CHAPTER 2

OBJECT-ORIENTED ELECTRODYNAMIC S-MATRIX CODE WITH MODERN
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2.1 Abstract

The S-matrix algorithm for the propagation of an electromagnetic wave through planar

stratified media has been implemented in a modern object-oriented programing language.

This implementation is suitable for the study of such applications as the Anderson localiza-

tion of light and super-resolution (perfect lensing). For our open-source code to be as useful

as possible to the scientific community, we paid particular attention to the pathological cases

that arise in the limit of vanishing absorption.

2.2 Introduction

Electromagnetic wave propagation through planar stratified media (multilayer stack) is a

century old problem in physics [1, 2]. It may be somewhat surprising that it is still relevant

today. In fact, it has only relatively recently been discovered that the transmission and

reflection coefficients for a multilayer stack may be written down without any computations

by using a complex version of the elementary symmetric functions [3, 4]. It has also been

recently discovered that the complex reflection coefficients follow the generalized version of

the composition law used to add parallel velocities in the theory of special relativity, see

[5, 6] and Refs. within. It is possible to use the aforementioned properties to formulate a

numerical wave propagation algorithm in planar stratified media as was done in [7], yet the

8
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resulting algorithm appears to be numerically unstable. The more traditional approach of

the late 1940s, namely, the transfer matrix algorithm [8–11], is also numerically unstable.

Both algorithms are numerically unstable because they contain exponentially increasing and

decreasing terms, see Section 2.6. There also exists an R-matrix algorithm [12–15], but it

is only conditionally stable (for reasons different from above) [12, 15]. We use a simple

version of the S-matrix algorithm, which is numerically stable [15–19]. Before considering

the details of the S-matrix algorithm and the need for its open-source implementation in

a modern object-oriented language, we briefly mention some of the current applications we

had in mind when we wrote the code.

In 1968, Veselago [20] considered a hypothetical non-active material in which the real

parts of the permittivity and permeability are simultaneously negative; we refer to such

a material as a left-handed material (LHM), but it is also known as a negative refractive

material. It was only in the early 2000’s that such an artificial material was fabricated [21, 22],

leading to an explosion of papers on the LHM, see [23] and Refs. within. One of the intriguing

properties of the LHM is the ability to image with a sub-wavelength image resolution (super-

resolution if you will), which has been proposed and studied in the context of a multilayer

stack [24, 25]. Another general area of application is the Anderson localization of light

[26, 27], which has been studied both theoretically and experimentally by Scales et al. [28],

who considered wave propagation at normal incidence through a multilayer stack made of

quartz and Teflon wafers. The effects of total internal reflection on light localization in a

random multilayer stack at oblique incidence have also been studied under the assumption

of complete phase randomization [29] along with the effects of the LHM on localization [30].

Other applications include the study of asymmetrical properties of light in a Fabry-Pérot

interferometer [31, 32].

In all of the above applications, the S-matrix algorithm was or could have been used;

however, to the best of our knowledge, an open-source and object-oriented implementation

of the S-matrix algorithm suitable for the LHM as well as the right-handed material (RHM)
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(where the real parts of the permittivity and permeability are not simultaneously negative)

is currently unavailable. Almost certainly, there are many “in-house” implementations of

some version of the algorithms discussed above being passed around among colleagues. We

suspect that some users of these “in-house” algorithms may be unaware of the numerical

stability issues and of pathological cases where the numerical implementation is not clear,

as discussed in Section 2.4. Moreover, in the context of reproducibility of scientific work, it

is important to have an open-source and publicly available implementation.

This paper is self-contained as much as possible in order for our implementation of the

S-matrix algorithm to be useful to the widest possible scientific community. We also point

out the benefits and drawbacks of using a high-level programing language called Python for

implementing our code, see Section 2.10.

2.3 Background

The source-free macroscopic Maxwell equations with assumed harmonic time dependence,

exp (−iωt), in the Système International (SI) unit system, at every ordinary point in space,

are:

∇ ·D = 0, ∇ ·B = 0, (2.1a)

∇× E = iωB, ∇×H = −iωD, (2.1b)

where E is the electric field, D is the displacement field, B is the magnetic field, H is

the magnetic intensity, and ω is the angular frequency. By an ordinary point in space, we

mean a point in space in whose “neighborhood” the physical properties of the medium are

continuous. Thus, strictly speaking, one cannot apply Maxwell’s equations at a surface that

separates two physically different media. If the medium is isotropic and homogeneous, then

D = εE and B = µH, where ε and µ are the permittivity and the permeability, respectively.

Permittivity must satisfy the Kramers–Kronig relations and is therefore a complex-valued

function of angular frequency. The same is true for permeability. Thus, in general, we have

ε = ε(ω) ∈ C and µ = µ(ω) ∈ C.
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The source-free macroscopic Maxwell equations are first-order linear partial differential

equations (PDEs) that must be supplemented by some boundary conditions. The conven-

tional boundary conditions for a source-free interface separating two media (1 and 2) are:

n ·
(
D(2) −D(1)

)
= 0, n ·

(
B(2) −B(1)

)
= 0, (2.2a)

n×
(
E(2) − E(1)

)
= 0, n×

(
H(2) −H(1)

)
= 0, (2.2b)

where n is a unit normal to the interface, and the superscript on the fields indicates from

which medium the interface is approached.

Taking the curl of (2.1b), then simplifying the result using the∇×(∇×A) = ∇ (∇ ·A)−

∇2A vector identity and (2.1a), we obtain the vector Helmholtz equation within each layer

(
∇2 + k2

){E
H

}
= 0, (2.3)

where k is the complex wavenumber, and k2 = µεω2. In general, k2 6= kk∗, where ∗ denotes

the complex conjugate, and the computation of k from k2 must be done with extreme care.

For example, the permittivity and permeability for an absorbing material are taken to be

ε = ε′ + iε′′ and µ = µ′ + iµ′′, respectively, where {ε′, µ′} ∈ R, {ε′′, µ′′} ∈ R+ and R+ denotes

the positive real numbers.2 Let ε = |ε|eiθε and µ = |µ|eiθµ , where {θε, θµ} ∈ [0, π].3 Then

k2 = εµω2

k =
√
|ε||µ|ωe

i
(
θε+θµ+2πn

2

)
, n = 0, 1, (2.4)

where ω > 0. The choice of the root in (2.4) is dictated by the physical requirement

that, in an absorbing medium, the wave must decay and not exponentially grow. Let k =

k′ + ik′′, {k′, k′′} ∈ R. Without loss of generality, consider a plane wave propagating in the

positive x-direction; then, we have ei(kx−ωt) = e−k
′′xei(k′x−ωt). Therefore, k′′ must be greater

2For the exp (+iωt) time dependence, ε = ε′ − iε′′, µ = µ′ − iµ′′, where {ε′, µ′} ∈ R, {ε′′, µ′′} ∈ R+.
3We always mean the positive square root of x when we write

√
x, where x ∈ R+. The fundamental issue

with the w = z
1
2 mapping is that the “square root” function has branch points at z = 0 and z = ∞ and

thus must have a branch cut connecting the two branch points, see [33, vol. 1, Sec. 54].
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than zero in order for the wave to decay in the positive x-direction.

2.3.1 Pathological Cases at Normal Incidence

In the case of a perfect dielectric (ε′′ = 0 and µ′′ = 0), the rule for choosing a physically

appropriate root in (2.4) may be established by taking the limit as absorption goes to zero.

Consider an almost perfect dielectric made of the RHM. Let ε = |ε|eiθε , µ = |µ|eiθµ , where

θε and θµ are infinitesimally small positive numbers, then θε+θµ
2
� π and θε+θµ

2
+π > π. Thus,

we must choose the n = 0 root in (2.4), i.e., k =
√
|ε||µ|ei

(
θε+θµ

2

)
ω. In the case of a truly

perfect dielectric (at fixed frequency), we may take the limit as θε and θµ approach zero to

obtain k =
√
|ε||µ|ω.

In the case of an almost perfect dielectric made of a LHM: Let ε = |ε|eiθε , µ = |µ|eiθµ ,

where θε and θµ are slightly less than π, then θε+θµ
2

< π and θε+θµ
2

+ π > π. Thus, we

must again choose the n = 0 root in (2.4), i.e., k =
√
|ε||µ|ei

(
θε+θµ

2

)
ω. For a truly perfect

dielectric (at fixed frequency), we may take the limit as θε and θµ approach π to obtain

k =
√
|ε||µ|eiπω = −

√
|ε||µ|ω. Notice that for the LHM with zero absorption, k < 0, and

for the RHM with zero absorption, k > 0.

2.4 Wave Propagation in Stratified Media

Consider the three-dimensional space divided into p+ 1 regions. The regions are infinite

in the yz-plane, see Figure 2.1.

The interfaces separating the regions are assumed to be perfectly planar (yz-plane). The

regions ` = 0, . . . , p − 1 are assumed to be isotropic and homogeneous with a complex

permittivity, ε`, and complex permeability, µ`. The region p is assumed to be isotropic and

homogeneous with real permittivity, εp, and real permeability, µp. In other words, we have

{ε`, µ`} ∈ C for ` = 0, . . . , p− 1 and {εp, µp} ∈ R.

A monochromatic plane wave in the `th region is given by

{
E`(r, t)
H`(r, t)

}
=

{
E`

H`

}
ei(k`·r−ωt), ` = 0, . . . , p, (2.5)
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Figure 2.1: The cross-sectional view of the multilayer stack is shown. The multilayer stack
consists of p+ 1 regions made of a RHM. A parallel polarized wave is incident from a semi-
infinite ambient medium (region p). The origin of the coordinate system is set on the planar
interface separating regions p and p− 1. The 0th region is a semi-infinite substrate.

where r = x x̂ + y ŷ + z ẑ, {E`,H`} are the complex vector amplitudes, k` = kx,` x̂ + ky,` ŷ +

kz,` ẑ is the complex wavevector. It is clear that (2.5) satisfies (2.3) if

k` · k` = k2
x,` + k2

y,` + k2
z,` = k2

` = ε`µ`ω
2. (2.6)

Without loss of generality, we can set kz,` = 0 because we can always rotate the coordinate

system so that the y-axis is parallel to the part of the k vector that lies in the yz-plane,

see Figure 2.1.4 The solution given by (2.5) in each region must also satisfy the boundary

conditions given by (2.2). Substituting (2.5) into (2.2) yields,

ky,p = ky,`, ` = 0, . . . , p− 1, (2.7)

where ky,p ∈ R because we have assumed that the region p has real permittivity and per-

meability. Therefore, from (2.7) we have ky,` ∈ R, but note that in general, kx,` ∈ C for

4We could have chosen to set ky,` = 0, and then rotated the coordinate system so that the z-axis is parallel
to the part of the k vector that lies in the yz-plane. The point is that k can always be made into a
two-dimensional vector.
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` = 0, . . . , p− 1. Using (2.6) and (2.7) yields

kx,` =
(
ε`µ`ω

2 − k2
y,p

)1/2
with Im[kx,`] > 0 (2.8)

for ` = 0, . . . , p, where Im denotes the imaginary part, and the root choice, Im[kx,`] > 0, is

dictated by the decaying wave requirement, see Section 2.3.

2.4.1 Pathological Cases at Oblique Incidence

It is clear from (2.8) that if ε′′` = 0, µ′′` = 0 and ε`µ`ω
2 > k2

y,p, then the root choice is not

resolved by the Im[kx,`] > 0 requirement. In order to resolve the root choice, we proceed by

taking a limit as absorption goes to zero just as we did in Section 2.3.1. For the RHM, let

ε` = |ε`|eiθε` , µ` = |µ`|eiθµ` and for the LHM, let ε` = |ε`|ei(π−θε`), µ` = |µ`|ei(π−θµ`), where θε`

and θµ` are infinitesimally small positive numbers. Then k2
x,` can be approximately written

as k2
x,` ≈ |A| e±iγ, where 0 ≤ γ � π, lim{ε′′` , µ′′`}→0 γ = 0, and the positive (negative) sign in

the exponential corresponds to the RHM (LHM). Thus, we have

Im [kx,`] =
√
|A|
{

sin

(±γ
2

)
, sin

(±γ
2

+ π

)}
,

where it is clear that for the RHM (LHM) the first (second) root must be chosen in order

for Im [kx,`] > 0. Therefore, if ε′′` = 0, µ′′` = 0 and ε`µ`ω
2 > k2

y,p, then for the RHM we have

kx,` = +
√
|ε`| |µ`|ω2 − k2

y,p, and for the LHM we have kx,` = −
√
|ε`| |µ`|ω2 − k2

y,p.

2.4.2 Origin and Numerical Treatment of the Pathologies

The limiting procedure carried out in Section 2.3.1 and 2.4.1 appears to be reasonable,

but unfortunately, it is also not physically attainable, even in principle! If we view ε(ω) and

µ(ω), where ω = ω′ + iω′′, in the context of the Kramers–Kronig relations, then ε(ω) and

µ(ω) are analytic functions in the upper-half ω-plane. Furthermore, it can be shown that

ε(ω) and µ(ω) are never purely real for any finite ω except for ω′ = 0 (positive imaginary

axis), e.g., see [34, Section 123] and [35, Section 82]. Therefore, the common practice of

replacing ε′ + iε′′ by ε′ and µ′ + iµ′′ by µ′ even in an infinitesimally small ω′ interval cannot

be justified. Moreover, by considering the global behavior of kx,` it can be shown that for a
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non-active medium kx,` is never zero [36]. However, we see from (2.8) that kx,`, for any ` 6= p

may be equal to zero if ε` and µ` are purely real. Of course, this case only occurs when the

angle of incidence precisely equals one of the critical angles, and from the global properties

of ε and µ we see that such angles cannot exist.

The above discussion suggests that the pathological cases only occur in an unphysical

approximation, i.e., ε ≈ ε′ and µ ≈ µ′. In our numerical code, the user may select how to

deal with the pathologies from the following two schemes:

1. If a region contains purely real permittivity and permeability, then the real permittivity

and permeability are replaced by a slightly absorbing permittivity and permeability,

respectively, i.e., for ` 6= p, ε′` → ε′` + iε′′` and µ′` → µ′` + iµ′′` , where ε′′` and µ′′` are small

positive numbers.

2. If a region contains purely real permittivity and permeability, then the kx,` is computed

as describe in Section 2.3.1 and 2.4.1. If this scheme is chosen, then the code may

produce erroneous results at or very near the critical angles.

2.5 Polarization

The most general polarization state is an elliptical polarization state. However, there

is no need to consider this general case because an elliptical polarization state can always

be decomposed into a linear combination of two linearly independent polarization states,

namely, the parallel polarization state and the perpendicular polarization state. In what

follows, it is convenient to express E`(r, t) and H`(r, t) in terms of each other by substituting

(2.5) into (2.1b) (with D` = ε`E`) and using the vector identity

∇×
{

E`(r, t)
H`(r, t)

}
= ik` ×

{
E`

H`

}
ei(k`·r−ωt),

to obtain
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E`(r, t) = −k` ×H`(r, t)

ε`ω
, (2.9a)

H`(r, t) =
k` × E`(r, t)

µ`ω
. (2.9b)

2.5.1 Parallel Polarization

A monochromatic plane wave is said to have parallel polarization if the electric field is

parallel to the plane of incidence. The plane of incidence is defined by the wavevector k

and the normal vector to the surface n; i.e., k and n lie in the plane of incidence. From

Figure 2.1, we have k in the xy-plane and n = ± x̂, thus, the plane of incidence is the

xy-plane.

Consider a parallel polarized incident plane wave of angular frequency ω propagating

in the positive x-direction. Maxwell’s equations (2.1) are linear PDEs, thus, the total wave

inside each region may be decomposed into reflected and transmitted waves with the following

wavevectors:

k±` = ±kx,` x̂ + ky,` ŷ, (2.10)

where kx,` is given by (2.8), ky,` is given by (2.7), + indicates a transmitted wave propagating

in the +x-direction, and − indicates a reflected wave propagating in the −x-direction; notice

that there is no reflected wave in the 0th region, see Figure 2.1. The magnetic intensity in

each region is given by

H±` (r, t) = ε`ωE
±
` exp

[
i
(
k±` · r− ωt

)]
ẑ, (2.11)

where E+
` is the complex amplitude associated with the transmitted wave, E−` is the complex

amplitude associated with the reflected wave, and E−`=0 ≡ 0. Substituting (2.11) into (2.9a)

yields

E±` (r, t) = E±` exp
[
i
(
k±` · r− ωt

)]
[−ky,` x̂± kx,` ŷ] . (2.12)
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From (2.2b), we see that the y-component of the total electric field and the total magnetic

intensity are continuous across the interface. It is convenient to define a new symbol for the

y-component of the electric field evaluated on the interface. Let

χ±` = ±kx,`E±` exp

[
±ikx,`

p∑

s=`+1

hs

]
, (2.13)

where h` is the thickness of the `th region and, for convenience, we set h`=0 = h`=p ≡ 0.

In (2.13), χ±`=0,...,p−1, denotes the y-component of the electric field at the interface between

regions ` and ` + 1 (the interface is approached from the `th region), and χ±`=p denotes the

y-component of the electric field at the interface between regions p and p− 1 (the interface

is approached from region p), see Figure 2.1. Substituting (2.11) and (2.12) into (2.2b), and

using (2.13) to simplify the result, yields

e+ikx,`+1h`+1χ+
`+1 + e−ikx,`+1h`+1χ−`+1 = χ+

` + χ−` , (2.14a)

w`+1

(
e+ikx,`+1h`+1χ+

`+1 − e−ikx,`+1h`+1χ−`+1

)
= w`

(
χ+
` − χ−`

)
, (2.14b)

for ` = 0, . . . , p− 1, where

w` =
ε`ω

kx,`
, ` = 0, . . . , p. (2.15)

After we obtain a linear system for the perpendicular polarization case, we will solve the

linear system given by (2.14), see Section 2.6.

2.5.2 Perpendicular Polarization

A monochromatic plane wave is said to have perpendicular polarization if the electric

field is perpendicular to the plane of incidence. The electric field in each region is given by

E±` (r, t) = E±` exp
[
i
(
k±` · r− ωt

)]
ẑ, (2.16)

where k±` is given by (2.10), and the ± superscripts have the same meaning as in Section 2.5.1.

Also as in Section 2.5.1, we set E−`=0 ≡ 0 because there is no reflected wave in the 0th region.
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Substituting (2.16) into (2.9b) yields

H±` (r, t) =
E±`
µ`ω

exp
[
i
(
k±` · r− ωt

)]
[ky,` x̂∓ kx,` ŷ] . (2.17)

From (2.2b), we see that both the total electric field and the y-component of the total

magnetic intensity are continuous across the interface. Let the electric field evaluated on the

interface be denoted by

χ±` = E±` exp

[
±ikx,`

p∑

s=`+1

hs

]
, (2.18)

where χ±`=0,...,p−1 denotes the z-component of the electric field at the interface between regions

` and `+1 (the interface is approached from the `th region) and χ±`=p denotes the z-component

of the electric field at the interface between regions p and p− 1 (the interface is approached

from region p). Substituting (2.16) and (2.17) into (2.2b), and using (2.18) to simplify the

result, yields (2.14), where

w` = − kx,`
µ`ω

, ` = 0, . . . , p. (2.19)

Notice that the linear system for the perpendicular polarization case is the same as the linear

system for the parallel polarization case, but the definitions of χ±` and w` are different.

2.6 Linear System

The traditional approach to solving the linear system given by (2.14) is to rewrite it as

[
χ+
`+1

χ−`+1

]
= M`

[
χ+
`

χ−`

]
, ` = 0, . . . , p− 1, (2.20a)

where

M` =
1

2w`+1

[
(w`+1 + w`)ψ

−1
`+1 (w`+1 − w`)ψ−1

`+1

(w`+1 − w`)ψ`+1 (w`+1 + w`)ψ`+1

]
, (2.20b)

and ψ` = exp (ikx,`h`). To compute χ+
0 , we iterate (2.20a) until ` = p− 1 to obtain

[
χ+
p /χ

+
0

χ−p /χ
+
0

]
= Mp−1Mp−2 · · ·M0

[
1
0

]
. (2.21)
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After computing χ+
0 from (2.21), we can find χ±` from (2.20a). The approach outlined above

is the standard transfer matrix method, but unfortunately it is numerically unstable because

the top half of M` grows exponentially and the bottom half of M` decreases exponentially

if Im [kx,`h`] 6= 0. To avoid the numerical instability, we must reformulate the linear system

given by (2.14) in terms of ψ` or ψ−1
` alone. If Im [kx,`h`] is large, then ψ` may cause underflow

errors and ψ−1
` may cause overflow errors. Generally speaking, underflow is preferred to

overflow because when underflow occurs, the (normal) number is rounded to the nearest

subnormal number or to 0.0; thus, it is desirable to reformulate the linear system in terms

of ψ` instead of ψ−1
` (see Section 2.6.1).

2.6.1 S-matrix

In this section, we present a particularly simple version of the S-matrix formulation of

(2.14) that avoids numerical instabilities. To derive the S-matrix, we write a scattering

matrix (S-matrix) for an “aggregate layer” consisting of 0, . . . , ` layers to obtain

[
χ−`
χ+

0

]
=

[
s

(1,1)
` s

(1,2)
`

s
(2,1)
` s

(2,2)
`

] [
0
χ+
`

]
. (2.22)

Using (2.20) to eliminate χ±` from (2.22) and comparing the result to (2.22) with `→ `+ 1

yields

s
(1,2)
`+1 =

w`+1 − w`
[
1− s(1,2)

`

] [
1 + s

(1,2)
`

]−1

w`+1 + w`

[
1− s(1,2)

`

] [
1 + s

(1,2)
`

]−1ψ
2
`+1, (2.23a)

s
(2,2)
`+1 =

2w`+1s
(2,2)
`

w`+1

[
1 + s

(1,2)
`

]
+ w`

[
1− s(1,2)

`

]ψ`+1, (2.23b)

for ` = 0, . . . , p − 1, where s
(1,2)
0 = 0 and s

(2,2)
0 = 1. Substituting ` = p into (2.22) yields

χ+
0 /χ

+
p = s

(2,2)
p , where s

(2,2)
p is computed recursively from (2.23b). Using (2.20) to compute χ±`

would make the algorithm numerically unstable. To avoid introducing numerical instability
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in the computation of χ±` , we eliminate χ+
0 and χ−`+1 from (2.20) and (2.22) to obtain

χ+
` =

2w`+1ψ`+1

w`+1

[
1 + s

(1,2)
`

]
+ w`

[
1− s(1,2)

`

]χ+
`+1, (2.24a)

for ` = p− 1, . . . , 0 and

χ−` = s
(1,2)
` χ+

` , ` = p, . . . , 1. (2.24b)

Notice that χ±` only depends on s
(1,2)
` . The S-matrix algorithm is numerically stable because

(2.23a) and (2.24) only depend on ψ`.

Originally, (2.23a) and (2.24) were derived in [16] by citing the general scattering-theory

paradigm that requires existence of a linear relationship between χ−` and χ+
` , i.e., χ−` =

s
(1,2)
` χ+

` , and then substituting it directly into (2.20) to obtain (2.23a) and (2.24a). Arguably

our derivation is just as simple as in [16] but follows the traditional S-matrix formulation

[15, 17] more closely.

We would like to note that it is possible to formulate an S-matrix algorithm where χ±`

are computed directly from χ+
p [18, 19], but such a formulation requires recursive com-

putation of three elements of an S-matrix rather than just one element in our formu-

lation. Moreover, it is also possible to obtain formulas that directly relate χ±` to χ+
p

from our formulation by simply multiplying out (2.24), i.e., χ+
` = s̃

(2,2)
`+1 s̃

(2,2)
`+2 · · · s̃

(2,2)
p χ+

p and

χ−` = s
(1,2)
`

(
s̃

(2,2)
`+1 s̃

(2,2)
`+2 · · · s̃

(2,2)
p

)
χ+
p , where s̃

(2,2)
`+1 = s

(2,2)
`+1 /s

(2,2)
` .

2.7 Conserved Quantities

In the case of the RHM, the time-averaged complex Poynting theorem for harmonic fields

is given by

∇ · S +Q(e) +Q(m) + 2iω
(
u(e) − u(m)

)
= 0, (2.25a)

where S = 1
2
E×H∗ is the complex Poynting vector and
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u(e) =
ε′

4
E · E∗ =

ε′

4
‖E‖2 , (2.25b)

u(m) =
µ′

4
H ·H∗ =

µ′

4
‖H‖2 , (2.25c)

Q(e) =
ωε′′

2
E · E∗ =

ωε′′

2
‖E‖2 , (2.25d)

Q(m) =
ωµ′′

2
H ·H∗ =

ωµ′′

2
‖H‖2 . (2.25e)

In (2.25), u(e) is the real time-averaged electric density, u(m) is the real time-averaged mag-

netic density, Q(e) and Q(m) represent time-averaged electric and magnetic losses, respectively

(e.g., Joule heating [37, Sec. 2.19, Sec. 2.20]). Substituting the total electric field and the

total magnetic intensity into (2.25b) and (2.25c), respectively, yields

u
(e)
` =

ε′`
4

(∥∥E+
`

∥∥2
+
∥∥E−`

∥∥2
+ 2Re

[
E+
` · E−`

∗])
, (2.26a)

u
(m)
` =

µ′`
4

(∥∥H+
`

∥∥2
+
∥∥H−`

∥∥2
+ 2Re

[
H+
` ·H−`

∗])
, (2.26b)

where Re denotes the real part.

In the case of the LHM, the complex Poynting theorem for harmonic fields given by (2.25)

is mathematically correct. However, the identification of the real electric density (2.25b)

and the real magnetic density (2.25c) is troublesome because both are negative. It was

pointed out by Veselago [20] that the LHM must be accompanied by frequency dispersion,

in which case the real electric density and the real magnetic density are not given by (2.25b)

and (2.25c), respectively. Moreover, simultaneously negative permittivity and permeability

occur very near resonance and there is therefore no frequency interval for the LHM where

permittivity and permeability may be reasonably approximated by a constant. For a more

detailed discussion see [23, 38, 39].

Another conserved quantity is the fundamental invariant in multilayers (FIM) [40, 41],

given by

w`+1

[(
ψ`+1χ

+
`+1

)2 −
(
ψ−1
`+1χ

−
`+1

)2
]

= w`

[(
χ+
`

)2 −
(
χ−`
)2
]
, (2.27)
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for ` = 0, . . . , p− 1. The FIM is a product of the continuity conditions for the electric field

(2.14a) and magnetic intensity (2.14b). However, the FIM is not an energy conservation

statement because it contains
(
χ±`
)2

and
(
χ±`+1

)2
instead of

∣∣χ±`
∣∣2 and

∣∣χ±`+1

∣∣2. In our view,

the FIM is particularly interesting because its structure is similar to that of the space-time

interval of special relativity, ds2 = dx2 − c2dt2, where c is the speed of light. Moreover, it

has been pointed out in [42] that many results associated with wave propagation through

planar stratified media are more easily derived through an analogy with special relativity.

In this paper, we don’t pursue the analogy between wave propagation though a multilayer

stack and the theory of special relativity any further, but we do want to stress that this

analogy is not a mere coincidence.

2.7.1 Energy Densities for Parallel Polarization

It is convenient to introduce a new symbol for the transverse component (the y-component)

of the electric field as a function of distance, x, into the multilayer stack. For ` = 0, . . . , p,

let

Γ±` (x) = ±kx,`E±` exp [±ikx,`x] (2.28)

then,

∣∣Γ±` (x)
∣∣2 = |kx,`|2

∣∣E±`
∣∣2 exp (∓2Im[kx,`]x) ,

Re
[
Γ+
` (x)Γ−`

∗
(x)
]

=− |kx,`|2 Re
[
E+
` E

−
`
∗
e+2iRe[kx,`]x

]
.

(2.29)

Substituting (2.12) into (2.26a) and using (2.29) to simplify the result yields

u
(e)
` (x) =

ε′`
4

[(
1 +

k2
y,p

|kx,`|2

)(∣∣Γ+
` (x)

∣∣2 +
∣∣Γ−` (x)

∣∣2
)

+2

(
1− k2

y,p

|kx,`|2

)
Re
[
Γ+
` (x)Γ−`

∗
(x)
]
]
. (2.30)

Substituting (2.11) into (2.26b) and using (2.29) to simplify the result yields

u
(m)
` (x) =

µ′` |w`|2
4

(∣∣Γ+
` (x)

∣∣2 +
∣∣Γ−` (x)

∣∣2 − 2Re
[
Γ+
` (x)Γ−`

∗
(x)
])
, (2.31)
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where w` is given by (2.15).

2.7.2 Energy Densities for Perpendicular Polarization

Again, it is convenient to introduce a new symbol for the transverse component (the

z-component) of the electric field as a function of distance, x, into the multilayer stack. For

` = 0, . . . , p, let

Γ±` (x) = E±` exp [±ikx,`x] (2.32)

then,

∣∣Γ±` (x)
∣∣2 =

∣∣E±`
∣∣2 exp (∓2Im[kx,`]x) ,

Re
[
Γ+
` (x)Γ−`

∗
(x)
]

=Re
[
E+
` E

−
`
∗
e+2iRe[kx,`]x

]
.

(2.33)

Substituting (2.16) into (2.26a) and using (2.33) to simplify the result yields

u
(e)
` (x) =

ε′`
4

[∣∣Γ+
` (x)

∣∣2 +
∣∣Γ−` (x)

∣∣2 + 2Re
[
Γ+
` (x)Γ−`

∗
(x)
]]
. (2.34)

Substituting (2.17) into (2.26b) and using (2.33) to simplify the result yields

u
(m)
` (x) =

µ′` |w`|2
4

[(
1 +

k2
y,p

|kx,`|2

)(∣∣Γ+
` (x)

∣∣2 +
∣∣Γ−` (x)

∣∣2
)

−2

(
1− k2

y,p

|kx,`|2

)
Re
[
Γ+
` (x)Γ−`

∗
(x)
]
]
, (2.35)

where w` is given by (2.19).

2.8 Transmission and Reflection Coefficients

The transmission coefficient, T , and the reflection coefficient, R, are given by

T =
Re
[
S+

0

]
· x̂

Re
[
S+
p

]
· x̂

, (2.36a)

R = −Re
[
S−p
]
· x̂

Re
[
S+
p

]
· x̂

, (2.36b)

with
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S+
0 =

1

2
E+

0 ×H+
0
∗

and S±p =
1

2
E±p ×H±p

∗
,

where it is understood that E±p and H±p
∗

are evaluated at the interface between regions p

and p− 1 (the interface is approached from region p), and E+
0 and H+

0
∗

are evaluated at the

interface between regions 1 and 0 (the interface is approached from the 0th region).

In the case of the parallel polarization state, substituting (2.11) and (2.12) into (2.36),

and using (2.13) to simplify the result, yields

T =
kx,p
εp

Re[ε∗0kx,0]

|kx,0|2
∣∣∣∣
χ+

0

χ+
p

∣∣∣∣
2

, (2.37a)

R =

∣∣∣∣
χ−p
χ+
p

∣∣∣∣
2

. (2.37b)

In the case of the perpendicular polarization state, substituting (2.17) and (2.16) into

(2.36), and using (2.18) to simplify the result, yields

T =
µp
kx,p

Re

[
k∗x,0
µ∗0

] ∣∣∣∣
χ+

0

χ+
p

∣∣∣∣
2

, (2.38a)

R =

∣∣∣∣
χ−p
χ+
p

∣∣∣∣
2

. (2.38b)

The transmission and reflection coefficients, given by (2.37) for the parallel polarization

state and by (2.38) for the perpendicular polarization state, are valid for both a right- and

a left-handed material.

2.9 Multilayer Classes

Python is a multi-paradigm programing language that supports object-oriented program-

ing, structured programing, and a subset of functional and aspect-oriented programing styles.

There is a large number of numerical libraries available for use with Python. We chose to

use a numerical library called SciPy [43] for numerical computations because, in our opinion,

a reader familiar with MATLABTM and/or Fortran 90/95 will find SciPy a very natural and

24



easy-to-use library.

In order for our multilayer classes, namely Boundary and Layer, which are collectively

called openTMM,5 to be as useful as possible to the scientific community, we paid particular

attention to the readability, usability, and maintainability of the code. Both classes are

implemented in an object-oriented programing style as described below.

The Boundary class is meant to be a base class (superclass in the Python lexicon) that

will be inherited by the derived classes (subclasses in the Python lexicon). The derived

classes perform “high-level” computations such as computing the energy density and the

transmission and reflection coefficients. The derived Layer class inherits the Boundary and

computes the quantities described in Table 2.1. The benefit of using inheritance in our

multilayer calculations is that other developers may extend the Layer class or write their

own derived class to compute the desired quantity of interest without having to implement the

low-level code, e.g., the code for computing kx,` and the S-matrix. The Boundary superclass

Table 2.1: The first column contains the name (as it appears in the code) of the object
attribute (method) of the class Layer, the second column contains a description of the
method, and the third column contains references to the section where a more detailed
description may be found.

Name Description Refs.

field Transverse component of the electric field as a function
of distance, Γ±(x)

2.7.1
2.7.2

energy Electric/magnetic energy density as a function of

distance, u(e,m)(x)

2.7.1
2.7.2

loss Electric/magnetic losses as a function of distance, Q(e,m)(x) 2.7
divPoynting Divergence of the Poynting vector as a function of

distance, ∇ · S(x)
2.7

FIM FIM at each boundary interface 2.7
FIMvsDist FIM as a function of distance 2.7
TRvsFreq Transmission and reflection coefficients as a function of

frequency f = ω/2π and/or angle of incidence φ, i.e.,
{T (f), R(f)}, {T (φ), R(φ)}, {T (f, φ), R(f, φ)}

2.8
TRvsAngle

TRvsFreqAndAngle

5openTMM is an open-source software distributed under the MIT license and is available from http://pypi.

python.org/pypi/openTMM.
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computes a “minimal” set of “basic” quantities, see Table 2.2, that are used by the Layer

subclass. Each function/method in the Boundary and Layer class contains a documentation

header (docstring in the Python lexicon), which describes the function/method in detail

and includes an example of its use. To access the docstrings, the user may use Python’s

help function or if more user friendly formatting is desired, the user may use SciPy’s info

function. For example, the docsting for Layer.energy function may be accessed via

>>> help(openTMM.Layer.energy)

>>> scipy.info(openTMM.Layer.energy)

and all docstings contained in a class may be accessed via

>>> help(openTMM.ClassName)

>>> scipy.info(openTMM.ClassName)

where ClassName is either Boundary or Layer. This interactive documentation feature of

Python makes it a very convenient language to use and largely eliminates the need to produce

separate code documentation. The help/scipy.info functions are similar to the Manual

Table 2.2: The first column contains the name (as it appears in the code) of the object
attribute of the class Boundary, the second column contains a description of the attribute,
and the third column contains references to a section and/or equation where a more detailed
description of the attribute may be found.

Name Description Refs.

self.h Thickness of each layer, h` (2.13), (2.18)
self.epsRel Relative permittivity of each region, ε`/εvacuum Section 2.4
self.muRel Relative permeability of each region, µ`/µvacuum Section 2.4
self.pol Polarization state Section 2.5
self.kx x-component of the wavevector, kx,` (2.8)
self.w Scaled self.kx (polarization dependent), w` (2.15), (2.19)
self.chiPlus Transverse component of the electric field evaluated

on the interface, χ+
` /χ

+
p

(2.13), (2.18)

self.chiMinus Transverse component of the electric field evaluated
on the interface, χ−` /χ

+
p

(2.13), (2.18)
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pager utils (man pages) of Unix-like operating systems; could one imagine using a Linux

shell without man python?

2.10 Python and Numerical Efficiency

There is some concern about the speed of computations in Python because it is byte-

compiled, not a compiled language such as Fortran 90/95 or C/C++. However, in our

opinion, the code readability (less error-prone syntax), flexibility (effortless integration with

other software) and ease-of-use of Python (leading to shorter development times) in many

cases outweigh any performance benefits of compiled languages. An interested reader may

consult [44–47] for a fuller discussion of why Python is a language of choice for scientific soft-

ware development. Typically, computationally intensive routines in Python are implemented

in compiled languages and therefore, the difference in computation time between Python and

complied languages is acceptable for many applications [45–48]. In the Python lexicon, the

mixing of programing languages is called the Pythonic approach; this is the approach we use

with the computationally intensive part of the Boundary superclass.

It is relatively obvious that the computationally intensive part of the Boundary superclass

is the computation of χ±` , i.e., the solution of the linear system described in Section 2.6.

Therefore, the computation of χ±` is implemented in Fortran 90 and the Python bindings

are built by F2PY [49] (F2PY is now part of SciPy). However, implementing “workhorse

functions” in a compiled language reduces the readability and maintainability of code to

some extent. Therefore, we strongly encourage developers to only implement workhorse

functions in compiled languages when they lead to severe bottlenecks. It is often the case that

bottlenecks can only be identified after code profiling (performance analysis). For example,

it is not obvious that the square root function in the computation of kx,` is relatively time-

consuming. The computation of kx,` is relatively expensive because SciPy’s square root

function, scipy.sqrt, does an element-by-element analysis of the input array to find if it

contains any real elements less than zero. If a real, less-than-zero element is found, SciPy

converts the whole input array to a complex data type and passes it to NumPy [50], which
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uses an efficient C code to compute the square root. In our case, SciPy’s time-consuming

element-by-element analysis is unnecessary because of a priori knowledge about kx,`, see

Section 2.4. We could avoid scipy.sqrt by directly using NumPy’s square root function,

but this is not the most convenient approach because NumPy’s square root function of

a complex number z = |z|eiθ returns
√
|z|eiθ/2, where −π < θ ≤ π, but (2.8) requires

that Im[kx,`] > 0. To avoid this inconvenience, we choose to implement our own square

root subroutine, cmplx_sqrt, which returns the square root in an appropriate quadrant as

required by (2.8). The cmplx_sqrt is implemented in Fortran 90 with Python binding build

by F2PY and depends on Fortran’s intrinsic square root function, SQRT.

To confirm that the run-time of the Python Boundary superclass is acceptable, we com-

pared it to a Boundary class implemented in pure Fortran 90. From Figure 2.2, we see that

for a large number of layers (& 300) the Python code is only 25 percent slower than the

pure Fortran 90 code. However, for a small number of layers (. 20) the Python code is

about 10 times slower than the pure Fortran 90 code, see inset in Figure 2.2, but this is

not major concern because such a small number of layers has an absolute execution time

about a second or so in Python. We believe that the run-time discrepancy between a small

and a large number of layers is caused by SciPy’s overhead cost, which does not increase

significantly as a function of array size.

2.11 Numerical Stability and Accuracy

To demonstrate the numerical stability and accuracy of openTMM, we numerically checked

the complex Poynting theorem given by (2.25a), the fundamental invariant in multilayers

given by (2.27), and the de Hoop reciprocity theorem [51, Section 6]. The de Hoop reciprocity

theorem states that if ε0 = εp and µ0 = µp, then the transmitted wave is unaffected by a

180 degree rotation of the multilayer stack around the z-axis, see Figure 2.1. We measure

the accuracy of a computed quantity in terms of the number of significant digits it agrees

with the theoretical value and we denote this measure of accuracy by δv. Approximately, δv
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Figure 2.2: The ratio of total computational time required to compute T (fi, φj) and R(fi, φj),
where 1 ≤ {i, j} ≤ 103, using openTMM and a pure Fortran 90 code. Each multilayer stack is
composed of the same number of pseudorandom layers of the following types: right-handed
layers with/without absorption and left-handed layers with/without absorption.

is given by

δṽ ≈ min

{
− log

∣∣∣∣
v − ṽRe

v

∣∣∣∣ ,− log

∣∣∣∣
v − ṽIm

v

∣∣∣∣
}

(2.39)

where v is the theoretical value and {ṽRe, ṽIm} are the numerically computed value. For a

numerical check of the complex Poynting theorem ṽRe is given as −Re [∇ · S] /
[
Q(e) +Q(m)

]

and ṽIm is given as −Im [∇ · S] /
[
2ω
(
u(e) − u(m)

)]
. For the FIM test, ṽRe (ṽIm) is the ratio

of the the real (imaginary) part of the left-hand side to the real (imaginary) part of the

right-hand side of (2.27). For the de Hoop reciprocity test, ṽRe = Re
[
χ+

0

]
/Re

[
χ+
p

]
and

ṽIm = Im
[
χ+

0

]
/Im

[
χ+
p

]
, where χ+

0 is the transmitted wave before the 180 degree rotation

of the multilayer stack and χ+
p is the transmitted wave after the rotation. For all three

numerical checks, v = 1 and all computations are performed in double-precision (≈ 16

significant digits). From Figure 2.3, we see that the three numerical checks are satisfied with

an accuracy of δṽ ≥ 12. Despite the fact that some of the layers in the stack chosen for
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Figure 2.3: δṽ is shown for a multilayer stack composed of the same number of pseudorandom
layers of the following types: right-handed layers with/without absorption and left-handed
layers with/without absorption.

Figure 2.3 have very high absorption, Im [kx,`h`] ≈ 30, we see that δṽ does not decrease as

a function of distance into the stack, which confirms that our S-matrix algorithm is indeed

numerically stable. The composition of the multilayer stack is summarized in Table 2.3. To

produce Figure 2.3, we used a normally incident plane wave of frequency 100 GHz and the

first pathological case scheme, see Section 2.4.2.

2.12 Conclusions

A numerically stable S-matrix algorithm for electromagnetic wave propagation through

planar stratified media composed of a right-handed and/or left-handed material has been

implemented in Python. Pathological cases caused by an unphysical approximation of zero

absorption have been carefully examined and numerically circumvented (see Section 2.4.2).

The numerical computations were implemented in an object-oriented programing style by

dividing them into two classes, Boundary and Layer. The Boundary class performs com-
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Table 2.3: The height, h, relative permittivity, εrel, and the relative permeability, µrel, of
each layer were pseudorandomly chosen from the intervals shown in the table. E.G., from
the second line of the table, we see that 125 layers have thickness between 1 mm and 10 mm,
and relative permittivity/permeability between −10 and −1. A 500-layer stack was used
for the Poynting theorem and the FIM test. For the de Hoop reciprocity theorem test, a
multilayer stack consisting of 5, 9, 13, . . . , 501 layers was used.

Test # of layers h (mm) ε′rel ε′′rel µ′rel µ′′rel

Poynting Thm
& FIM

125 [1, 10] [1, 10] 0 [1, 10] 0
125 [1, 10] [−10,−1] 0 [−10,−1] 0
125 [1, 10] [−10,−1] [0.01, 0.1] [−10,−1] 0
115 [1, 10] [1, 10] 0 [1, 10] [0.01, 0.1]
10 [10, 15] [2, 10] [0, 2] [1, 10] 0

de Hoop Thm

{1, . . . , 125} [1, 10] [1, 10] 0 [1, 10] 0
{1, . . . , 125} [1, 10] [−10,−1] 0 [−10,−1] 0
{1, . . . , 125} [1, 10] [−10,−1] [0.01, 0.1] [−10,−1] 0
{1, . . . , 125} [1, 10] [1, 10] 0 [1, 10] [0.01, 0.1]
1 [1, 10] [2, 10] [0, 1] [1, 10] 0

putationally intensive calculations, namely the solution of the linear system described in

Section 2.6.1 and the square root of k2
x,`. The workhorse functions of the Boundary class

were implemented in Fortran 90 in order to avoid computational bottlenecks. The Layer

class performs high-level calculations, such as calculation of u(e,m)(x), Q(e,m)(x), Γ±(x), and

FIM. The code has been tested and is accurate to ≈ 12 significant digits (see Section 2.11).

We hope that our open-source and object-oriented implementation of the S-matrix al-

gorithm, which is suitable for modern applications such as Anderson localization of light

and perfect lensing, will be adopted by a wide scientific community. At the very least, we

hope that our publicly available implementation of the S-matrix algorithm will encourage

the scientific community to use open-source software, thus increasing the reproducibility of

scientific work.
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CHAPTER 3
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3.1 Abstract

Linear response laws and causality (the effect cannot precede the cause) are of fundamen-

tal importance in physics. In the context of classical electrodynamics, students often have a

difficult time grasping these concepts because the physics is obscured by the intermingling

of the time and frequency domains. In this paper, we analyse the linear response laws and

causality in the time and frequency domains with the aim of pedagogical clarity. We will

show that it is easy to violate causality in the frequency domain by making a vanishing

absorption approximation. Further, we will show that there can be subtle differences be-

tween Fourier transforming Maxwell equations and using a monochromatic source function.

We discuss how these concepts can be obscured and offer some suggestions to improve the

situation.

3.2 Introduction

When encountering Maxwell’s equations in matter for the first time, students are faced

with many conceptual, as well as mathematical, difficulties. In the time-domain, the four

macroscopic Maxwell’s equations, namely,

∇ ·D = 4πρ, ∇ ·B = 0,

∇× E +
1

c

∂B

∂t
= 0, ∇×H− 1

c

∂D

∂t
=

4π

c
J,

(3.1)
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are straightforward enough. The problem arises in the constitutive relations connecting E

and D or B and H. Whereas the time-domain Maxwell equations are real and involve

only real quantities, the associated response functions are temporally non-local and their

very definition involves integration with respect to time. To professionals, this issue is well

understood and is almost always side-stepped notationally by writing the response equations

as

D = εE and H = µ−1B, (3.2)

and mentally juggling the time and frequency domains. Here, for simplicity, we have assumed

that the medium is linear, isotropic and homogeneous (LIH). Experts understand that (3.2)

means either

(a) Fourier-domain relations of general validity (within LIH assumptions) or

(b) time-domain relations valid only for monochromatic fields.

But to simultaneously present (3.1) and (3.2) to students (as is done in popular textbooks

[1–3]) can mislead and confuse them; it obscures the important temporal non-locality of

the response functions, mixes time and frequency domain concepts, and inserts complex

quantities into manifestly real equations. To avoid a possible source of confusion, we use the

phrase ‘Fourier-domain’ instead of ‘frequency-domain’ because the latter may also refer to a

time-domain relation with a monochromatic source.

Moreover, students fail to understand the relationship between absorption, dispersion and

causality (the effect cannot precede the cause [4]). To see the interplay between absorption,

dispersion and causality pictorially, we follow Toll’s ingenious presentation [5] by considering

an input signal S(t) that is zero for t < 0. The input S(t) is a weighted sum of many

sinusoidal components, such as C1(t) = sin(ω1t + ψ1), each of which extends from t = −∞

to t =∞. Notice that the weighted sum of all sinusoidal components produces a zero input

signal for t < 0. If a system only absorbs one component, e.g., C1(t), without affecting

other components, then the output of such a system would simply be S(t)−C1(t), which is
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non-zero for t < 0, see Figure 3.1. Such a system is impossible because it violates causality;

the output is non-zero before the onset of the input signal. Therefore, for causal systems,

an absorption of one frequency must be accompanied by phase shifts of other frequencies

in order to produce a zero output for t < 0, and the necessary phase shifts are prescribed

by the dispersion relation. Moreover, the converse is true as well; namely, a phase shift of

one frequency is necessarily accompanied by an absorption at other frequencies. From Toll’s

argument, we conclude that it is impossible to design a physical system that is causal and

dispersionless. Therefore, when one speaks of dispersionless media, one violates a sacred

physical principle (causality).
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)
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0
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Figure 3.1: The input signal, S(t), is shown along with the output signal, S(t)− C1(t), of a
system that only absorbs the C1(t) component of S(t), without affecting other components.

This paper is intended not only for instructors who teach advanced undergraduate and

beginning graduate students, but also for the graduate students themselves. The mathe-

matical sophistication needed to understand this paper is essentially that of a beginning

graduate student. However, throughout the paper we extensively use the theory of the tem-

pered distributions; with which a typical beginning graduate student may not be familiar.
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To remedy this deficiency, we have included an example-driven tutorial on the formal theory

of tempered distributions in the appendix.

3.3 Background

The time-domain relationship between D and E for a LIH and time-translationally in-

variant medium is given by6

D = E + 4πP and P(t) =

∫ ∞

−∞
χ(t− t′)E(t′) dt′, (3.3a)

where

χ(t− t′) = α(t− t′)Θ(t− t′) and Θ(t− t′) =

{
1, t− t′ > 0

0, t− t′ < 0
. (3.3b)

The appearance of the Heaviside step function, Θ, in the definition of the electric suscep-

tibility, χ, reminds us that the polarization vector, P, can only depend on the past values

of the applied electric field, E. Therefore, (3.3) gives a causal relationship between the

displacement field, D, and the applied electric field. Taking the Fourier transform of (3.3)

yields

D̃(ω) = Ẽ(ω) + 4πP̃(ω) and P̃(ω) = χ̃(ω)Ẽ(ω), (3.4)

with the Fourier transform pair given by

f̃(ω) = F [f(t)] =

∫ ∞

−∞
f(t)e+iωt dt, (3.5a)

f(t) = F−1
[
f̃(ω)

]
=

1

2π

∫ ∞

−∞
f̃(ω)e−iωt dω. (3.5b)

Under suitable mathematical conditions, the principle of causality in the time-domain

translates into the Kramers–Kronig (KK) relations (the Hilbert transform pair) in the

Fourier-domain, namely,

6For our purposes, it is more convenient to work with (3.3) than with D =
∫∞
−∞ ε(t − t′)E(t′) dt′, where

ε(t− t′) = δ(t− t′) + 4πχ(t− t′).
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Imχ̃(ω) = H [Reχ̃(η)] = − 1

π
−
∫ ∞

−∞

Reχ̃(η)

η − ω dη, (3.6a)

Reχ̃(ω) = H−1 [Imχ̃(η)] =
1

π
−
∫ ∞

−∞

Imχ̃(η)

η − ω dη, (3.6b)

where Reχ̃(ω) and Imχ̃(ω) are the real and imaginary parts of χ̃(ω), respectively, and −
∫

denotes the Cauchy principal value integral. In free space, by definition, χ(t − t′) = 0 and

consequently, the KK relations are trivially satisfied. The KK relations can be derived in

‘two lines’ by using the Fourier representation of the Heaviside step function and utilizing

the freedom to define α(t−t′) for t−t′ < 0 [6]. A lengthier but more traditional derivation of

the KK relations is available in [7]. This derivation is self-contained and does not assume a

priori knowledge of the theory of functions of a complex variable. For a historically accurate

account on how the KK relations were first derived, see [8].

In general, it is difficult to establish an equivalence between the KK relations (3.6) and

causality (3.3b). If χ̃(ω) is a square-integrable function, then the Titchmarsch theorem

[9] guarantees that (3.6) and (3.3b) are equivalent. In other words, χ(t − t′) ∝ Θ(t − t′)

if and only if χ̃(ω) satisfies (3.6). The square-integrability requirement on χ̃(ω) may be

somewhat relaxed. It can be shown that if χ̃(ω) is bounded but E(t) and P(t) are square-

integrable functions, then (3.6) and (3.3b) are equivalent [5]. Unfortunately, these conditions

are generally not satisfied, in fact, they are not even satisfied in the idealized examples

considered in this paper. Therefore, we must part with our näıve notion that χ is a classical

function and treat it as a generalized function (distribution). For our purposes, it will be

sufficient to treat χ(t) as a tempered distribution. A reader not familiar with the formal

theory of the tempered distributions should read the appendix which, for our purposes, serves

as a self-contained tutorial on tempered distributions. For the reader’s convenience, Table 3.1

provides a summary of the notation introduced in the appendix. From this point on, unless

explicitly noted otherwise, the symbol χ(t) should be interpreted as a tempered distribution,

i.e. χ(t) ∈ S ′. Consequently, the convolution integral in (3.3a) and the Fourier transform
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Table 3.1: A brief description of the symbols introduced in the appendix.

Symbol Description

S The Schwartz class
S ′ The class of tempered distributions
〈f, φ〉 =

∫∞
−∞ f(t)φ(t) dt Tempered distribution f ; f ∈ S ′ and φ ∈ S

(f ∗ ψ) (t) =
∫∞
−∞ f(t− t′)ψ(t′) dt′ Convolution of f with ψ; f ∈ S ′ and ψ ∈ S

supp [f ] Support of f ; f ∈ S ′

pair given by (3.5) should also be interpreted in a distributional sense; see appendix A.1.1.

Strictly speaking, the Hilbert transform pair given by (3.6) should also be interpreted in a

distribution sense. However, for our purposes, it will be sufficient to think of the Hilbert

transform as a ‘generalized’ convolution of the singular function 1/ω (Hilbert kernel) with

a tempered distribution f̃(ω). For a more mathematical treatment of the Hilbert transform

of the tempered distributions, see [10–13]. In 1958, Taylor [14] (also, see discussion in [15])

rigorously established the equivalence between causality and the KK relations when χ̃(ω) is

a tempered distribution. This is a very important result that we will use repeatedly. We will

force χ̃(ω) ∈ S ′ to satisfy the KK relations, thereby guaranteeing that χ(t− t′) vanishes for

t− t′ < 0. In other words, Taylor’s result gives causality meaning in the Fourier-domain.

To explore these fundamental issues in a pedagogical context, we will consider two text-

book models that are used to derive or explain the dispersion of electromagnetic waves.

The first is the Drude model of conduction in metals. The second is the damped harmonic

oscillator, which arises in semi-classical models of atomic absorption. The former is just a

damped harmonic oscillator model with a spring constant of zero, and where we interpret

the damping in terms of electron collisions.
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3.4 Drude Model

In a metal, the motion of a conduction electron of charge −e and mass m under the

influence of an electric field E is given by

d2r

dt2
+

1

τ

dr

dt
= − e

m
E, (3.7a)

where τ is the collision mean free time [16]. Substituting δ(t − t′)n for E and taking the

Fourier transform, see appendix A.1.1, yields

ω

(
ω +

i

τ

)
g̃(ω) =

e

m
Ẽ(ω) and Ẽ(ω) = e+iωt′n, (3.7b)

where g̃(ω) denotes the Green’s function, n = 1√
3

(x + y + z), and {x,y, z} is the standard

basis for the three-dimensional space. Using P̃(ω) = −nceg̃(ω), we see that the electric

susceptibility is given by

ω

(
ω +

i

τ

)
χ̃(ω) = −e

2nc

m
, (3.8a)

where nc denotes the conduction electron density (assumed to be constant). When solving

(3.8a) for χ̃(ω) we must remember that χ̃(ω) is a tempered distribution; in other words, we

seek a distributional solution to (3.8a). The distributional solution consists of two parts; the

particular part, χ̃p(ω), given by the ‘näıve division’ of (3.8a), namely,

χ̃p(ω) = − σ0

ω(τω + i)
, (3.8b)

where σ0 = e2ncτ/m is the static conductivity, and the homogeneous part, χ̃h(ω), which

satisfies

〈
ω

(
ω +

i

τ

)
χ̃h(ω), φ(ω)

〉
= 〈0, φ(ω)〉 (3.8c)

for all φ ∈ S. The solution to (3.8c) is of the form of (A.28) and not of (A.36) because

ω+ i/τ never equals zero for real ω and finite τ . In other words, supp [χ̃h(ω)] = {0} and not

{0,−i/τ}. Therefore, as shown in the first example in appendix A.1.2, the form of the full
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solution to (3.8a) is given by

χ̃(ω) = −σ0

(
1

ω(τω + i)
+ χ̃h(ω)

)
, where χ̃h(ω) = c0δ(ω). (3.8d)

To find the unknown constant c0, we require that the response of the system be causal.

According to Taylor [14], the causality requirement is the same thing as requiring that

Imχ̃ = H [Reχ̃], which yields c0 = −π. Therefore, the causal electric susceptibility is given

by

χ̃(ω) = −σ0

(
1

ω(τω + i)
− πδ(ω)

)
, (3.9a)

χ(t− t′) = F−1 [χ̃(ω)] = σ0

(
1− e−

t−t′
τ

)
Θ(t− t′). (3.9b)

Notice that χ(t− t′) is zero for t < t′ and increases monotonically to its maximum value of

σ0 for t > t′. The rate of the increase is controlled by the collision mean free time. In the

next two subsections, we will study the effects of χ(t− t′) on the response functions when a

constant or monochromatic electric field is applied.

3.4.1 A Constant Electric Field

Suppose now that a constant electric field, E0, was turned on at t′ = 0. Substituting

E(t′) = E0Θ(t′) and (3.9b) into (3.3a) yields

P(t) = σ0

(
t− τ + τe−

t
τ

)
E0Θ(t), (3.10a)

and the current density is given by

J(t) =
∂P

∂t
= σ0

(
1− e−

t
τ

)
E0Θ(t). (3.10b)

The time dependence in (3.10b) reminds us that when we connect a wire to a battery, the

current in the wire does not instantaneously reach its Ohm’s law steady-state value. The

rate at which the current reaches the steady-state value is controlled by the collision mean

free time τ , as evident from the exponential term in (3.10b). Of course, (3.10b) reduces to

Ohm’s law, J = σ0E0, when t� τ .
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3.4.2 A Monochromatic Field

Another simple situation is a monochromatic driving field of angular frequency ωd that

has existed since the beginning of time (t′ = −∞). Substituting E(t′) = E0 cos(ωdt
′) and

(3.9b) into (3.3a) yields

D(t) = A1E0 cos (ωdt) + A2E0 sin (ωdt) , (3.11a)

where

A1 = 1− 4πσ0τ

1 + τ 2ω2
d

and A2 =
4πσ0

ωd (1 + τ 2ω2
d)
. (3.11b)

From (3.11a), we see that D(t) has one component that oscillates in-phase and one com-

ponent that oscillates out-of-phase with the applied field. The out-of-phase oscillations are

caused by collisions of the electrons with the ions (absorption). We can put (3.11) into a

form of (3.2) if we let

qε = A1 + iA2 and qE = E0e−iωdt; (3.12a)

then, (3.11) becomes

D(t) = Re
(

qε qE
)
. (3.12b)

Notice that, in general, D(t) 6= Re(qε)Re(qE). Thus, what professionals mean by (3.2) is really

(3.12) if they are talking about a monochromatic applied field. But what is qε? To answer

this question, let’s rewrite (3.12a) in an illuminating form, namely,

qε− 1

4π
= qχ(ωd) = − σ0

ωd(τωd + i)
. (3.13)

Notice that (3.13) has a simple pole at ωd = 0. The root cause of this pole is our assumption

that the medium is homogeneous, and the definition of homogeneity clearly depends on

the spatial wavelength of the interrogating field [17, 18]. Thus, (3.13) may be devoid of

physical reality near ωd = 0. Be that as it may, the resemblance between qχ(ωd) and χ̃(ω) is

uncanny if we replace ωd with ω in (3.13). But is such a comparison of qχ and χ̃ meaningful?

Strictly speaking, it is not, because qχ is a classical (ordinary) function and χ̃ is a tempered
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distribution (generalized function). Nevertheless, we want to compare these two objects by

‘promoting’ qχ to be a generalized function. Let X(ω) = χ̃(ω)− qχ(ω), then

〈X(ω), φ(ω)〉 =

∫ ∞

−∞
πσ0δ(ω)φ(ω) dω = πσ0φ(0) (3.14)

for all φ ∈ S. From (3.14), we see that supp [X(ω)] = {0}, i.e. the ‘promoted’ qχ(ω) and

χ̃(ω) differ in a neighbourhood of ω = 0. In the laboratory, we actually make a Fourier-

domain ‘measurement’ in the time-domain by driving the system for a very long time with a

monochromatic field [19]. Thus, we experimentally measure qχ(ωd) and not χ̃(ω). Moreover,

it is the χ̃(ω) that satisfies the KK relations and not the qχ(ωd), even if we ‘promote’ qχ(ωd)

to a generalized function. This crucial difference between χ̃(ω) and qχ(ωd) is often missed by

students.

A mathematically inclined reader might object to the usage of E(t′) = E0 cos(ωdt
′) for a

driving field. Clearly, cos(ωdt
′) /∈ S but we have only defined the convolution (A.18) between

a distribution in S ′ and a function in S. Of course, physically we know that a starving grad-

uate student had to turn the field on and off. If we assume that the field was turned on/off in

a smooth and slow fashion, then it could be approximated by cos(ωdt
′) exp

[
− (at′)2], which

does belong to the space S. A similar physical argument can be used to justify the usage of

the Heaviside step function in Section 3.4.1. Moreover, under certain conditions, it is pos-

sible to define convolution of two tempered distributions [20]. This definition is beyond the

scope of this paper but, if used, it would eliminate the need for the above physical argument.

3.5 Plasma

A limiting case of the Drude model is dilute neutral plasma with very large collision

mean free time. If we try to expand (3.9a) around 1/τ = 0, we will obtain a non-causal

χ̃(ω) because the homogeneous solution χ̃h(ω) changes form in this limiting case. To see

this, expand (3.8c) around 1/τ = 0 to obtain

〈
ω2χ̃h(ω), φ(ω)

〉
= 〈0, φ(ω)〉 , (3.15a)
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for all φ ∈ S. The form of the solution to (3.15a) is given by, see (A.31),

χ̃h(ω) = c0δ(ω) + c1δ
′(ω), (3.15b)

which differs from the homogeneous part of (3.9a) by a δ′(ω) term. Therefore, the full

solution to ω2χ̃(ω) = −e2nc/m is given by

χ̃(ω) = −ω
2
p

4π

(
1

ω2
+ c0δ(ω) + c1δ

′(ω)

)
, (3.15c)

where ω2
p = 4πe2nc/m and ωp is called the angular plasma frequency. To find the unknown

constants, c0 and c1, we use Taylor’s causality requirement, Imχ̃ = H [Reχ̃], which yields

c0 = 0 and c1 = iπ. Therefore, the causal electric susceptibility is given by

χ̃(ω) = −ω
2
p

4π

(
1

ω2
+ iπ

d

dω
δ(ω)

)
, (3.16a)

χ(t− t′) = F−1 [χ̃(ω)] =
e2nc

m
(t− t′) Θ(t− t′). (3.16b)

We compare (3.16a) to a common textbook expression for the electric susceptibility of dilute

neutral plasma, given by [16]

χ̃(ω) = −ω
2
p

4π

1

ω2
. (3.17)

This differs from (3.16a) in a neighbourhood of ω = 0. The difference is caused by the fact

that (3.16a) is causal and valid for all ω, unlike the textbook version (3.17), which is only

valid for high enough frequencies, namely, ω � 1/τ .

The above example illustrates that the approximation in the Fourier-domain must be

done with care if we insist on a causal electric susceptibility. It is interesting to note that

no such care is necessary if the approximation is done in the time-domain. For example,

expanding (3.9b) around (t− t′)/τ = 0 immediately yields (3.16b), which is clearly causal.
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3.5.1 Plasma in a Constant Electric Field

Next, let us consider a plasma in a constant electric field E0 that was turned on at t′ = 0.

Substituting E(t′) = E0Θ(t′) and (3.16b) into (3.3a) yields

P(t) =
e2nc

2m
t2E0Θ(t). (3.18)

From (3.16b) and (3.18), we see that the electric susceptibility is linear in time and that the

polarization vector is quadratic in time. The quadratic dependence of P(t) on time signifies

that the dilute neutral plasma is accelerating uniformly under the influence of the applied

static electric field. Moreover, from (3.3a), we see that D grows quadratically in time and

that at t = 0, the response field D is equal to the applied field E0.

3.5.2 Plasma in a Monochromatic Electric Field

Finally, if we drive the plasma with a monochromatic field of angular frequency ωd that

existed since t′ = −∞, we will see another source of confusion for students. Substituting

E(t′) = E0 cos(ωdt
′) and (3.16b) into (3.3a) yields

D(t) = qεE(t) and qε− 1 = 4πqχ (ωd) = −ω
2
p

ω2
d

. (3.19)

Again, if we replace ωd with ω in (3.19) and ‘promote’ qχ(ω) to be a tempered distribution,

then the ‘promoted’ qχ(ω) differs from χ̃(ω) only in a neighbourhood of ω = 0. Also, notice

that all quantities in (3.19) are purely real. Of course, D(t) oscillates in-phase with E(t)

because we have effectively ignored collisions (absorption) in our approximation. If we let

qE = E0 exp (−iωdt), then (3.19) may be written as D(t) = Re(qε)Re(qE), which to a student

may confirm an improper interpretation of (3.2).

3.6 Damped Harmonic Oscillator

A damped harmonic oscillator is a simple model for the motion of a bound electron in a

dielectric. The equation of motion in the time-domain is given by

d2r

dt2
+ γ

dr

dt
+ ω2

0r = − e

m
E, (3.20a)
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where ω0 is the natural angular frequency and γ is the radiation damping. The Green’s

function for (3.20a) (obtained in the same manner and notation as in Section 3.4) is

(ω − ω+) (ω − ω−) g̃(ω) =
e

m
Ẽ(ω), (3.20b)

where

ω± = ±s− i
γ

2
and s =

√
ω2

0 −
(γ

2

)2

. (3.20c)

If we assume that each electron in the dielectric oscillates with the same natural angular

frequency, then using P̃(ω) = −enbg̃(ω) yields

(ω − ω+) (ω − ω−) χ̃(ω) = −e
2nb

m
, (3.21a)

where nb denotes the density of the bounded electrons (assumed to be constant). From

(3.21a), we see that χ̃(ω) has two simple poles in the complex ω-plane. As we will soon see,

the location of these poles in the complex ω-plane will dictate the form of the homogeneous

solution, χ̃h(ω). First, consider the simplest under-damped case, namely when s > 0 and

γ 6= 0. In this case, ω−ω+ and ω−ω− never equal zero for real ω. Therefore, the homogeneous

solution is simply zero, χ̃h(ω) = 0, and the full solution is given by

χ̃(ω) = −e
2nb

m

1

(ω − ω+) (ω − ω−)
, (3.21b)

χ(t− t′) = F−1 [χ̃(ω)] =
e2nb

m

e−
γ
2

(t−t′) sin [s(t− t′)]
s

Θ(t− t′). (3.21c)

Notice that we didn’t have to impose Taylor’s causality requirement, Imχ̃ = H [Reχ̃], as it

was ‘automatically’ satisfied by (3.21b).

To get a better understanding of (3.21c), let’s put it in a constant electric field that turns

on at t′ = 0. Substituting E(t′) = E0Θ(t′) and (3.21c) into (3.3a) yields

P(t) = P0

[
1− e−

γ
2
t

(
cos(st) +

γ sin(st)

2s

)]
Θ(t), (3.22a)

where

P0 =
e2nb

mω2
0

E0. (3.22b)
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From (3.22), we see that P(t) monotonically increases from zero at t = 0 to some maximum

value, and then oscillates around P0 before finally settling at P0. The oscillations around

P0 remind us that the bounded electrons oscillate around the new equilibrium position.

In the case of vanishing radiation damping, we may set γ = 0 in (3.21c) to obtain

χ(t− t′) =
e2nb

mω0

sin [ω0(t− t′)] Θ(t− t′), (3.23)

which is clearly causal. But if we set γ = 0 in (3.21b), we would violate causality! To obtain

a causal χ̃(ω), we set γ = 0 in (3.21a) to obtain

(ω − ω0) (ω + ω0) χ̃(ω) = −e
2nb

m
. (3.24a)

From (A.35) and (A.36), we see that the form of the full solution to (3.24a) is given by

χ̃(ω) =
e2nb

2mω0

[
1

ω + ω0

− 1

ω − ω0

+ χ̃h(ω)

]
, (3.24b)

where

χ̃h(ω) = b0δ(ω + ω0) + c0δ(ω − ω0). (3.24c)

As in previous examples, we find the unknown constants, b0 and c0, via Taylor’s causality

requirement, Imχ̃ = H [Reχ̃], which yields b0 = −iπ and c0 = iπ. Therefore, the full casual

solution to (3.24a) is given by

χ̃(ω) =
nbe

2

2mω0

[
1

ω + ω0

− iπδ(ω + ω0)− 1

ω − ω0

+ iπδ(ω − ω0)

]
, (3.24d)

and the inverse Fourier transform of (3.24d), of course, yields (3.23). From the above exam-

ple, we again conclude that when considering limiting cases of the electric susceptibility in

the Fourier-domain, we must be careful not to inadvertently violate causality. However, in

the time-domain, we don’t have to worry about the solution not reducing to a proper form

in these limiting cases.
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3.7 Concluding Remarks

In this paper, we have taken a somewhat contrarian approach to the linear response laws

of classical electrodynamics by looking at the response functions in the time-domain. The

advantage of the time-domain is that all quantities are purely real and causality is naturally

expressed in terms of time. The disadvantage is that the response functions are temporally

non-local, so most of us get tired of writing convolutions on the blackboard and quickly

slip into a short-hand mix of time and frequency/Fourier domain notations that can confuse

students profoundly.

While it is perfectly reasonable to avoid complications, such as dispersion, in introductory

physics courses, by the time students are in their third or fourth year of physics study, it is

important to expose them to the fundamental principles associated with a classical, macro-

scopic picture of matter. In particular, we believe that the following should be emphasized:

• Causality is easy to enforce in the time-domain, but the constitutive relations are

non-local in time and involve convolution integrals.

• The constitutive relations are mathematically simple in the Fourier-domain, but causal-

ity is given by the Kramers–Kronig relations (the Hilbert transform pair).

• We should make it clear whether we are really transforming into the Fourier-domain,

or whether we are assuming a monochromatic source in a time-domain experiment.

Very often the results look the same, but as we have shown, confusing the two can lead

to serious misunderstandings.

• Finally, it should be emphasized that Maxwell’s equations (in the time-domain) are

purely real and involve only purely real quantities. The Fourier transformation pro-

motes variables to the complex plane. As teachers, we should be careful when speaking

of the real and imaginary parts of the response function, and preface our remarks with

a note that we are working in the non-physical, but highly useful, Fourier-domain.
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third edition, 2004.

[25] A. H. Zemanian, Distribution Theory and Transform Analysis, McGraw-Hill, New York,
1965.

[26] I. M. Gel’fand, G. E. Shilov, Generalized Functions, volume 1, Academic Press, New
York, 1964.

52



[27] J. D. Jackson, Classical Electrodynamics, John Wiley & Sons, New York, third edition,
pp. 69–70.

A.1 Appendix A - Distribution Theory

The ordinary (classical) functions may be thought of as a mapping between two sets

of numbers. We can extend the idea of an ordinary function by considering a mapping

(functional, if you will) between a set of functions and a set of numbers. The physical

reason for extending the idea of an ordinary function lies in our inability to experimentally

measure a function at a point, e.g., see [21, pp. 1–2], [22]. Let f(x) represent temperature

at some point x. To measure the temperature at that point, we place a thermometer there

to obtain a value for f(x), but do we actually obtain a value of the temperature at point

x? The bulb of the thermometer has finite size; thus, what we measure is an average

temperature around the point x. Mathematically an average is a weighted sum, and our

measurement only reveals the value T1 =
∫
f(x)φ1(x) dx, where φ1(x) is essentially zero away

from the bulb of the thermometer. If we make another measurement of the temperature

at point x using a different thermometer, then we would measure T2 =
∫
f(x)φ2(x) dx,

and hopefully, the ‘true’ temperature T ≈ (T1 + T2) /2. The above discussion is meant to

serve as a physical motivation for defining what we will call generalized functions as certain

linear functionals. Generalized functions are also called distributions, and we will use both

terms interchangeably. Our presentation of the generalized functions closely follows that

of Strichartz [21]. A reader interested in a more detailed study may also find [23–26] helpful.

For our purposes, it will be sufficient to consider only a special class of distributions,

namely, the tempered distributions. Before we can formally define tempered distributions,

we must first define a set of ‘good’ functions. This set of ‘good’ functions is also called

the space of test functions. For the tempered distributions, the space of test functions,

denoted by S, contains all real or complex-valued functions φ(t) that are classically infinitely

differentiable and, along with all its derivatives, vanish at infinity faster than the reciprocal

of any polynomial. For example, any function of the form
∑N

n=0 cnt
n exp (−t2) belongs to
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S. We are now ready to define the class of tempered distributions, denoted by S ′, as all

continuous7 linear functionals on S. A linear functional f on S is a rule by which we assign

to every test function φ(t) a (real or complex) number denoted by 〈f, φ〉, such that the

identity 〈f, c1φ1 + c2φ2〉 = c1 〈f, φ1〉 + c2 〈f, φ2〉 is satisfied for arbitrary test functions φ1

and φ2 and (real or complex) numbers c1 and c2. The terminology and notation used for

distributions can be confusing at times because the phrase ‘function f or even generalized

function (distribution) f ’ may refer to f itself or to the value of 〈f, φ〉. In other words, no

distinction is made between a distribution and a ‘function’ from which the distribution was

obtained.8 To make the notion of tempered distributions more concrete let’s consider a few

simple examples. Let’s find a distribution defined by f = Θ′(t), i.e.

Tf =

〈
dΘ(t)

dt
, φ(t)

〉

=

∫ ∞

−∞

dΘ(t)

dt
φ(t) dt = −

∫ ∞

−∞
Θ(t)

dφ(t)

dt
dt (A.1)

= −
∫ ∞

0

dφ(t)

dt
dt = − (φ(∞)− φ(0)) = φ(0), (A.2)

where we integrated by parts in (A.1) and the integrated terms vanished because φ is a

‘good’ function, i.e. φ ∈ S. By comparing (A.2) to the sifting property of the Dirac delta

function

〈δ(t), φ(t)〉 =

∫ ∞

−∞
δ(t)φ(t) dt = φ(0), (A.3)

we conclude that the (generalized) derivative of the Heaviside step function equals the Dirac

delta function. We can even differentiate (in a distributional sense, of course) more compli-

cated functions. Let f = g(t)δ′(t), where g(t) is a polynomial of any degree; then

7The definition of continuity of linear functionals is rather technical and not necessary for our purposes.
8Strictly speaking, this is an abuse of terminology but it is so common that one must be aware of it. Moreover,
one often speaks of generalized functions (distributions) as if they were proper functions, e.g., the Dirac
delta function δ(t).
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Tf =

〈
g(t)

dδ(t)

dt
, φ(t)

〉
(A.4)

=

∫ ∞

−∞

(
g(t)

dδ(t)

dt

)
φ(t) dt =

∫ ∞

−∞

dδ(t)

dt

(
g(t)φ(t)

)
dt.

Integrating by parts and noticing that the product of g(t) and φ(t) is still in S (so that the

integrated terms vanish), yields

Tf = −
∫ ∞

−∞
δ(t)

(
g(t)

dφ(t)

dt
+

dg(t)

dt
φ(t)

)
dt

= −g(0)φ′(0)− g′(0)φ(0). (A.5)

We can write (A.5) in a more standard form that doesn’t involve the derivatives of φ(t).

Using (A.3) and noting that

〈δ′(t), φ(t)〉 =

∫ ∞

−∞

dδ(t)

dt
φ(t) dt = −

∫ ∞

−∞
δ(t)

dφ(t)

dt
dt = −φ′(0),

we obtain

〈
g(t)

dδ(t)

dt
, φ(t)

〉
= 〈g(0)δ′(t), φ(t)〉 − 〈g′(0)δ(t), φ(t)〉 . (A.6)

It is a very common abuse of notation to ‘drop’ the 〈 , 〉 brackets, along with φ(t), and write

(A.6) simply as

g(t)δ′(t) = g(0)δ′(t)− g′(0)δ(t). (A.7)

In particular, if we let g(t) = t in (A.4), then (A.7) yields tδ′(t) = −δ(t); not just zero as

one might have näıvely expected. An alert reader may have noticed that in the derivation

of (A.7), we never used the assumption that g(t) is a polynomial; all that the derivation

required was g(t)φ(t) ∈ S. While it is definitely true that g(t)φ(t) ∈ S when g(t) is a

polynomial, requiring g(t) to be a polynomial is an unnecessary restriction. In other words,

(A.7) holds for any function g(t) as long as g(t)φ(t) ∈ S. For example, g(t) could be sin(t),

but it cannot be exp (t4) because then g(t)φ(t) /∈ S and the integrated terms will not vanish.

We considered this example in such detail because we will have numerous opportunities to
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use (A.7) in appendix A.1.2.

A.1.1 The Fourier Transform of Tempered Distributions

The key idea in generalizing the notation of a derivative is to move the derivative from a

function (generalized function) onto a set of ‘good’ functions, namely, φ(t) ∈ S. Moreover, we

saw that by integrating by parts enough times, every (generalized) function had a derivative,

because the space S is composed of classically infinitely differentiable functions. We will

use this ‘moving idea’ (adjoint operator) to define the Fourier transform of a tempered

distribution f(t). By the Fourier transform of f(t) ∈ S ′, denoted by f̃(ω) or by F [f(t)], we

mean

〈F [f(t)] , φ(ω)〉 = 〈f(t),F [φ(ω)]〉 , (A.8)

where

〈f(t),F [φ(ω)]〉 =

∫ ∞

−∞
f(t)

(∫ ∞

−∞
φ(ω)e+iωt dω

)
dt. (A.9)

By the inverse Fourier transform of f̃(ω), denoted by F−1
[
f̃(ω)

]
, we mean

〈
F−1

[
f̃(ω)

]
, φ̃(t)

〉
=
〈
f̃(ω),F−1

[
φ̃(t)

]〉
, (A.10)

where

〈
f̃(ω),F−1

[
φ̃(t)

]〉
=

∫ ∞

−∞
f̃(ω)

(
1

2π

∫ ∞

−∞
φ̃(t)e−iωt dt

)
dω. (A.11)

By changing the order of integration in (A.9) and (A.11), we see that (A.9) and (A.11)

are indeed consistent with the classical Fourier transform pair. The underlining reason for

defining the Fourier transform pair by (A.8) and (A.10) lies in the fact that if φ ∈ S then

φ̃ is also in S; the converse is also true. Moreover, it can be shown that f ∈ S ′ if and only

if f̃ ∈ S ′. For a proof of these and related matters, see [21, chapter 3], [24, chapter 6], [25,

chapter 7] and [26, chapter 2]. Now, we will make (A.8)–(A.11) more concrete by considering

a few simple examples.
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For our first example, we will compute the generalized Fourier transform of δ(t), i.e.

〈F [δ(t)] , φ(ω)〉. Substituting δ(t) into (A.9) and changing the order of integration yields

∫ ∞

−∞
φ(ω)

(∫ ∞

−∞
δ(t)e+iωt dt

)
dω =

∫ ∞

−∞
φ(ω) dω = 〈1, φ(ω)〉 . (A.12)

Thus, we see that F [δ(t)] = 1. Moreover, by taking the inverse Fourier transform, we obtain

the famous integral representation of the Dirac delta function, namely,

δ(t) =
1

2π

∫ ∞

−∞
e−iωt dω. (A.13)

It’s worth stressing that (A.13) should be interpreted in a distribution sense and, strictly

speaking, writing (A.13) as we did is an abuse of notation. However, such abuses of notation

are very common in physics; e.g., see the famous graduate electrodynamics textbook [27].

As another simple example, consider the generalized inverse Fourier transform of

2πδ̃(ω − ω0), where ω0 is a real number; i.e.
〈
F−1

[
2πδ̃(ω − ω0)

]
, φ̃(t)

〉
when ω0 ∈ R.

Substituting 2πδ̃(ω−ω0) into (A.11), then changing the order of integration and integrating

over ω yields

∫ ∞

−∞
φ̃(t)e−iω0t dt =

〈
e−iω0t, φ̃(t)

〉
. (A.14)

Thus, we see that F−1
[
δ̃(ω − ω0)

]
= exp(−iω0t).

For our last example, let us compute the Fourier transform of the nth generalized deriva-

tive of f(t) ∈ S ′. From (A.8), we have

〈
F

[
dn

dtn
f(t)

]
, φ(ω)

〉
=

∫ ∞

−∞

(
dn

dtn
f(t)

)
φ̃(t) dt. (A.15)

Performing integration by parts n-times on the right-hand side (where the integrated terms

vanished because φ̃ ∈ S), yields

(−1)n
∫ ∞

−∞
f(t)

(
dn

dtn
φ̃(t)

)
dt = (−1)n

∫ ∞

−∞
f(t)F [(+iω)n φ(ω)] dt

=

∫ ∞

−∞
F [f(t)] (−iω)n φ(ω) dω, (A.16)
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where we obtained (A.16) by using the definition (A.8). Finally, comparing (A.16) with the

left-hand side of (A.15) yields

F

[
dn

dtn
f(t)

]
= (−iω)n F [f(t)] . (A.17)

Notice that in this example, we have used the definition (A.8) twice; Strichartz [21, pp. 49–50]

appropriately refers to this as ‘definition chasing’.

No discussion of the Fourier transform of tempered distributions would be complete

without the Fourier transform of a convolution integral. For our purposes, it will be sufficient

to only consider convolution of the tempered distribution f with a fixed element ψ from the

space of ‘good’ functions. Let f ∈ S ′ and ψ ∈ S; then, by the convolution of f with ψ,

denoted by (f ∗ ψ) (t), we mean

(f ∗ ψ) (t) =

∫ ∞

−∞
f(t− t′)ψ(t′) dt′. (A.18)

By a simple change of variables, we see that convolution is commutative, i.e. (f ∗ ψ) (t) =

(ψ ∗ f) (t). Convolution defines an infinitely differentiable function and thus can be viewed

as a ‘smoothing’ process. To see this, let h(t) = (f ∗ ψ) (t) then

dn

dtn
h(t) =

dn

dtn
[(f ∗ ψ) (t)] =

∫ ∞

−∞

(
dn

dtn
f(t− t′)

)
ψ(t′) dt′ (A.19)

=
dn

dtn
[(ψ ∗ f) (t)] =

∫ ∞

−∞

(
dn

dtn
ψ(t− t′)

)
f(t′) dt′. (A.20)

From (A.20), we conclude that all derivatives of h(t) exist in the classical sense because

ψ ∈ S, and from (A.19) we see that it doesn’t matter how ‘rough’ (e.g., δ′(t) is ‘rougher’

than δ(t)) the distribution is. In passing, we note another useful property of (A.18), namely

that its Fourier transform corresponds to multiplication in the Fourier-domain, i.e.

〈F [(ψ ∗ f) (t)] , φ(ω)〉 =
〈
ψ̃(ω)f̃(ω), φ(ω)

〉
. (A.21)
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A.1.2 Support and Structure of Tempered Distributions

We often want to speak about the local properties of distributions as if the distributions

were ordinary (classical) functions. When speaking about an ordinary function f(t), the

statement ‘f(t) has a value of f(t1) when t = t1’ has meaning, but the statement is nonsense

if f(t) is a distribution.9 However, we can identify a set of points where distribution f is non-

zero. Loosely speaking, this set of points is known as the support of f . The formal definition

of support requires us to define where a distribution f is zero. We say a distribution f(t) is

zero, f(t) = 0, on an open interval (a, b) if 〈f(t), ψ(t)〉 = 0 for every infinitely differentiable

test function ψ(t) that vanishes in a neighbourhood of every point not in (a, b) interval. For

example, if f(t) = 0 on (−1, 1), then ψ(t) vanishes outside the (−1+ε, 1−ε) interval for some

ε > 0. We now formally define the support of a distribution f(t), denoted by supp [f(t)],

as the complement of the set of points t such that f(t) = 0 in a neighbourhood of t. For

example, if f(t) = 0 on (−∞,∞), then supp [f(t)] is the empty set and, as a less trivial

example, supp [δ(t)] = {0}. Moreover, we will show that

supp

[
dn

dtn
δ(t)

]
= {0} . (A.22)

Consider any open interval I1 that does not contain the point t = 0; then,

〈
dn

dtn
δ(t), ψ(t)

〉
= (−1)n

〈
δ(t),

dn

dtn
ψ(t)

〉
= (−1)n

dn

dtn
ψ(0) = 0

because ψ(t) vanishes in a neighbourhood of t = 0. Of course, for any open interval I2 that

does contain the point t = 0, the derivatives of ψ don’t vanish at the point t = 0 for every

test function ψ. Thus, we see that all derivatives of δ(t) have the same point-support.

The above discussion was necessary to understand the following ‘structure’ theorem. A

tempered distribution f(t) with supp [f(t)] = {t0} must be of the form [21, pp. 82–88]

f(t) =
N∑

n=0

cn
dn

dtn
δ(t− t0), (A.23)

9Recall that we have defined distributions only by their action on the space of test functions.
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where the coefficients cn=0,...,N are complex numbers, i.e. cn ∈ C for n = 0, . . . , N . In

other words, any tempered distribution with a point-support may be expressed as a finite

linear combination of the Dirac function and its derivatives; this is a powerful statement!

In the next paragraph, we will show how we can use (A.23) to solve ‘algebraic’ equations in

a distributional sense. These types of equations are frequently encountered when we solve

differential equations by the Fourier transform technique.

As our first example, consider the following equation,

〈(t− t0) f(t), φ(t)〉 = 〈1, φ(t)〉 , (A.24)

for all φ(t) ∈ S. Before we find the unknown tempered distribution f(t), we note that it is

customary to abuse the notation and write (A.24) simply as

(t− t0) f(t) = 1. (A.25)

Naively, we might expect that

fp(t) =
1

t− t0
, (A.26)

would solve (A.25), but this is only the particular part of the solution. We could have a

tempered distribution fh(t) with supp [fh(t)] = {t0} such that (t−t0)fh(t) = 0, and therefore,

f(t) = fp(t) + fh(t) would also satisfy (A.25). We refer to fh(t) as the homogeneous solution

and, in light of the structure theorem in the previous paragraph, we know it must be of the

form

fh(t) =
N∑

n=0

cn
dn

dtn
δ(t− t0). (A.27)

Substituting (A.27) into 〈(t− t0)fh(t), φ(t)〉 = 〈0, φ(t)〉 and integrating by parts until the

derivatives only appear on φ yields

−c1φ(t0) + 2c2φ
′(t0)− 3c3φ

′′(t0) + · · ·+ (−1)NNcNφ
(N−1)(t0) = 0.
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The above equation must hold for all φ ∈ S. Thus, the coefficients must vanish independently,

i.e. cn = 0 for n = 1, 2, . . . , N . Therefore, the homogeneous solution is given by

fh(t) = c0δ(t− t0), (A.28)

and the full solution to (A.25) (or more formally, to (A.24)) is given by

f(t) =
1

t− t0
+ c0δ(t− t0). (A.29)

Loosely speaking, from (A.29) we see that we can divide by zero, provided we add an ap-

propriate tempered distribution with a point-support. In general, using the same procedure

as above, we can show that the distributional solution to (t− t0)n f(t) = 1 is given by

f(t) = fp(t) + fh(t), where

fp(t) =
1

(t− t0)n
, (A.30)

fh(t) = c0δ(t− t0) + c1δ
′(t− t0) + · · ·+ cn−1δ

(n−1)(t− t0). (A.31)

For our second and last example, consider (in a distributional sense, of course) the fol-

lowing equation,

(t− t1) (t− t2) f(t) = 1, (A.32)

where t1 6= t2. From our previous example, we expect the solution to be of the form

f(t) =
1

(t− t1) (t− t2)
+

N∑

n=0

bnδ
(n) (t− t1) +

M∑

m=0

cmδ
(m) (t− t2) . (A.33)

Substituting (A.33) into (A.32) (of course, we actually mean 〈(t− t1) (t− t2) f(t), φ(t)〉 =

〈1, φ(t)〉, for all φ ∈ S) and integrating by parts until the derivatives only appear on φ yields

N∑

n=1

(−1)nbn
[
n(n− 1)φ(n−2)(t1) + n(t1 − t2)φ(n−1)(t1)

]

+
M∑

m=1

(−1)mcm
[
m(m− 1)φ(m−2)(t2)−m(t1 − t2)φ(m−1)(t2)

]
= 0. (A.34)
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From (A.34), we see that bn = 0 for n = 1, . . . , N and cm = 0 for m = 1, . . . ,M . Therefore,

the full solution to (A.32) is given by f(t) = fp(t) + fh(t), where

fp(t) =
1

(t− t1) (t− t2)
, (A.35)

fh(t) = b0δ (t− t1) + c0δ (t− t2) . (A.36)

Notice that if t1 = t2 then (A.36) does not yield the correct solution, which is given by (A.31)

(with n = 2 and t1 = t2 → t0). The reason for this ‘discrepancy’ is because our conclusion

from (A.34), namely, that bn=1,...,N = 0 and cm=1,...,M = 0, is not valid if t1 = t2. In other

words, we must be very careful when dealing with distributional solutions in limiting cases

such as t2 → t1. In the body of the paper, these limiting cases arise when we consider

vanishing absorption.
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CHAPTER 4

MEASURING THE VOID: THEORETICAL STUDY OF SCATTERING BY A

CYLINDRICAL ANNULUS

A paper published in the Journal of Quantitative Spectroscopy & Radiative Transfer.

Alex J. Yuffa*, John A. Scales

Department of Physics, Colorado School of Mines, Golden, CO 80401, USA

*Primary researcher and author. E-mail: ayuffa@gmail.com

4.1 Abstract

In this paper, we analyze a monochromatic plane wave scattering from an infinite ho-

mogeneous cylindrical annulus. In particular, we study the effect that the inner part of the

cylindrical annulus (cylindrical void, if you will) has on the scattered field. This is done by

isolating the cylindrical void’s contribution to the scattered field. We show that if the cylin-

drical void is small, then its contribution to the scattered field may be approximated by the

“screened cylindrical void” (SCV) approximation. We first develop the SCV approximation

in a physically intuitive manner, and then show that it could also be obtained in a more

mathematically rigorous manner. Numerical results comparing the SCV approximation to

the exact solution are also presented.

4.2 Introduction

Consider a monochromatic plane wave scattering from an infinitely long homogeneous

and isotropic cylindrical annulus with outer radius r1 and inner radius r2, see Figure 4.1(a).

Let ε1 denote the permittivity of the space surrounding the cylindrical annulus and let ε2

denote the permittivity of the cylindrical annulus itself, r2 < r < r1. Let us refer to the

region of space inside the cylindrical annulus as the “cylindrical void” and ask what effect
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the cylindrical void has on the scattered field(s) outside the cylindrical annulus. If one were

to experimentally investigate this, one would do the following:

(a) measure the total field V (1)(r, θ) outside the cylindrical annulus (r > r1);

(b) measure the total field U (1)(r, θ) outside an identical “host cylinder;” i.e., a cylinder of

radius r1 and permittivity ε2, as illustrated in Figure 4.1(b);

(c) compute the difference between the two fields in (a) and (b):

W (sca)(r, θ) = V (1)(r, θ)− U (1)(r, θ). (4.1)

Following the above procedure, W (sca)(r, θ) contains the effect that the cylindrical void

had on the scattered field. In this paper, we show that W (sca)(r, θ) can be approximated

by the scattered field produced by the cylindrical void when a plane wave from a region of

space with a permittivity of ε2 is incident on it. This approximation holds if the “screening

effect” (discussed in Section 4.3) of the cylindrical annulus is properly accounted for, and

if the cylindrical void is sufficiently small. We refer to this approximation as the screened

cylindrical void (SCV) approximation. Furthermore, we investigate the rate, denoted by

Wext, at which the energy is extinguished (depleted) by the cylindrical void from the total

field outside, U (1)(r, θ), the host cylinder.

To the best of our knowledge, the SCV approximation and its physical interpretation

(see Section 4.3) has not been previously considered in the literature. In order to make

the paper accessible to the widest possible scientific community, we use the well-known

Lorenz–Mie theory [1–4] to derive the SCV approximation. However, we do note that our

intuitive derivation of the SCV approximation, which is presented in Section 4.3, is physically

guided by the Debye series expansion [5]. In short, the Debye series expansion consists of

re-expressing each Mie scattering coefficient in terms of an infinite series called the Debye

series. Each term in the Debye series may be physically interpreted in terms of the number
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(a) (b) (c)

Figure 4.1: The cross-sectional view of the cylindrical scattering objects is shown. The origin
of the coordinate system (r, θ), where −π ≤ θ < π, is concentric with the cylindrical objects.
In each panel, the region is denoted by a boxed number and the permittivity of each region
is also indicated. For example, region three, r < r2, in panel (a) has a permittivity of ε1 and
region one, r > r2, in panel (c) has a permittivity of ε2.

of reverberations the wave has experienced. A reader interested in the use of the Debye

series expansion in the context related to this paper, namely, plane wave scattering by a

multilayered cylinder, may consult [6, 7] and references therein.

Although we do not explicitly consider many diverse areas of science where the scattering

by a cylindrical void is important (e.g., see [3, 4]), we would like to mention one, namely,

localization. Fifty years after the publication of Anderson’s seminal work [8], localization

continues to be a thriving area of research [9] in theoretical and experimental physics. Local-

ization of millimeter/submillimeter electromagnetic waves is particularly interesting because

both the amplitude and the phase of the electromagnetic field can be easily measured with a

vector network analyzer [10]. At these wavelengths, the preparation of disordered samples is

also inexpensive and straightforward with standard computer-numerically-controlled (CNC)

milling techniques. A sample may be prepared by drilling small holes in a large Teflon (ultra

low-loss material) cylinder. Further, by illuminating the sample from the side and putting it

on a rotational stage, we can generate essentially arbitrary realizations of the same random

disorder. When the number of small scatterers is large, say, over 1000, then what is impor-
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tant is the rate at which the scatterer extinguishes the energy from the incident field, rather

than the geometrical shape/size of each individual scatterer [11, 12]. Thus, the physical

insight into scattering by a single small cylindrical void discussed in this paper may be of

benefit in understanding the experimental model described above.

Throughout this paper, we will use the Gaussian unit system, and we will assume that all

fields are harmonic in time with a exp(−iωt) time factor, where ω is the angular frequency.

Furthermore, we will assume that all fields are polarized in the positive ẑ-direction. The

positive ẑ-direction is out of the page in Figure 4.1. All media considered in this paper are

assumed to be non-magnetic, and ε1 is assumed to be purely real.

4.3 Intuitive Derivation of the SCV Approximation

In this section, a physically intuitive derivation of the SCV approximation is presented.

The derivation is organized as follows. First, we imagine a unit plane wave u(inc)(r, θ) inci-

dent from region one onto the cylindrical void shown in Figure 4.1(c). Then, we compute

the scattered field u(sca)(r, θ) in region one generated by the scattering of u(inc)(r, θ) from

the cylindrical void. Second, to account for the screening effect of the cylindrical annu-

lus, we use the previously found scattered field u(sca)(r, θ) as the incident (primary) field,

i.e., w(inc)(r, θ) ≡ u(sca)(r, θ), originating from the center of the host cylinder shown in Fig-

ure 4.1(b). Finally, we compute the total field w(1)(r, θ) in region one shown in Figure 4.1(b)

and physically interpret the terms contained in it to obtain an approximation to W (sca)(r, θ),

see (4.1).

Let us note that all fields in this paper satisfy the two-dimensional (2D) Helmholtz equa-

tion. The radial solution of the 2D Helmholtz equation is composed of a linear combination

of integer order Bessel functions of the first and second kind, which we denote by Jn(ξ)

and Yn(ξ), respectively. The Bessel functions Jn(ξ) and Yn(ξ) also satisfy the Wronskian

relationship [13], namely,

Jn+1(ξ)Yn(ξ)− Jn(ξ)Yn+1(ξ) =
2

πξ
. (4.2a)
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Also, Jn(ξ), Yn(ξ) and the Hankel function of the first kind, which we denote by Hn(ξ) =

Jn(ξ) + iYn(ξ), satisfy the recurrence relation [13],

d

dξ
Ψn(ξ) =

n

ξ
Ψn(ξ)−Ψn+1(ξ), (4.2b)

where Ψ denotes J , Y or H. Lastly, we note the Jacobi–Anger expansion of a plane wave

[13], namely,

eiξ cos θ =
∞∑

n=0

gninJn(ξ) cos (nθ) , (4.2c)

where gn denotes the Neumann factor: g0 = 1 and gn = 2 for n ≥ 1.

Returning to the scattering of the unit plane wave from the cylindrical void shown in

Figure 4.1(c), let the incident wave be u(inc)(r, θ) = exp(ik2r cos θ), where k2 =
√
ε2ω/c is the

wavenumber and c is the speed of light in a vacuum. Then, the field in region two u(2)(r, θ),

and the total field in region one decomposed as u(1)(r, θ) = u(inc)(r, θ) + u(sca)(r, θ), may be

written as



u(inc)(r, θ)
u(sca)(r, θ)
u(2)(r, θ)


 =

∞∑

n=0

gnin



Jn(k2r)
δnHn(k2r)
γnJn(k1r)


 cos(nθ), (4.3)

where k1 =
√
ε1ω/c. In writing (4.3), we used the Jacobi–Anger expansion (4.2c) to rewrite

exp(ik2r cos θ) as an infinite sum, imposed the Sommerfeld radiation (outgoing cylindrical

wave) condition on u(sca)(r, θ), and required u(2)(r, θ) to be regular (finite) at r = 0. To find

the unknown coefficients in (4.3), we require that the electric field and its normal derivative

be continuous across the r = r2 interface, i.e.,

u(1) = u(2) and
∂

∂r
u(1) =

∂

∂r
u(2) on r = r2, (4.4)

to obtain a system of linear equations. Solving this system of linear equations for δn and

using (4.2b) to simplify the result, yields

δn = − Jn+1(k1r2)Jn(k2r2)− κJn(k1r2)Jn+1(k2r2)

Jn+1(k1r2)Hn(k2r2)− κJn(k1r2)Hn+1(k2r2)
, (4.5a)
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where κ = k2/k1, n ∈ Z+, and Z+ denotes the set of all nonnegative integers. It is convenient

to introduce curly bracket notation, {Ψn+1(ξ); Φ(η)}, by which we mean

{Ψn+1(ξ); Φn(η)} ≡ (Ψn+1(ξ)Φn(η)− κΨn(ξ)Φn+1(η)) .

For example, (4.5a) in the curly bracket notation reads as

δn = − {Jn+1(k1r2); Jn(k2r2)}
{Jn+1(k1r2);Hn(k2r2)} , n ∈ Z+. (4.5b)

Having found the expansion coefficients of the scattered wave u(sca)(r, θ), we are now ready to

see how they should be modified in order to account for the screening effect of the cylindrical

annulus.

Imagine a “line-source” embedded in the center of the host cylinder shown in Fig-

ure 4.1(b). We take the field produced by the line-source to be equal to u(sca)(r, θ) in

(4.3). If we use this field as the incident field, i.e., w(inc)(r, θ) ≡ u(sca)(r, θ), then the to-

tal field w(2)(r, θ) inside the host cylinder (region two in Figure 4.1(b)) may be written as

w(2)(r, θ) = w(inc)(r, θ) + w(sca)(r, θ), where

w(sca)(r, θ) =
∞∑

n=0

gninβnJn(k2r) cos (nθ) . (4.6a)

Notice that in (4.6a), we required w(sca)(r, θ) to be regular at r = 0. This requirement is

necessary because we are essentially treating the cylindrical void as a line-source in this

paragraph. The field outside the host cylinder (region one in Figure 4.1(b)), w(1)(r, θ), must

satisfy the Sommerfeld radiation condition and thus, it is given by

w(1)(r, θ) =
∞∑

n=0

gninαnHn(k1r) cos (nθ) . (4.6b)

Imposing the boundary conditions w(1) = w(2) and (∂/∂r)w(1) = (∂/∂r)w(2) on r = r1, then

solving the resultant linear system for αn and using (4.2a) with (4.2b) to simplify the result

yields

αn =

( −2i

πk1r1 {Hn+1(k1r1); Jn(k2r1)}

)
δn, n ∈ Z+. (4.7)
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We physically interpret the term in parentheses in (4.7) as the screening effect of the cylin-

drical annulus on the scattered wave generated by the cylindrical void. The αn coefficients

are not quite the correct ones to use in W (sca)(r, θ) because they do not contain the screening

effect that the cylindrical annulus had on the incident wave. A moment’s thought reveals

that this screening effect had to be the same as the screening effect on the scattered wave.

Thus, the W (sca)(r, θ) expansion coefficients should be given by (4.7) with the parenthesis

term squared. Therefore, W (sca)(r, θ) is approximately given by

W (sca)(r, θ) ∼=
∞∑

n=0

gnin
( −2i

πk1r1 {Hn+1(k1r1); Jn(k2r1)}

)2

δnHn(k1r) cos (nθ) , (4.8)

where the δn coefficients are given by (4.5).

4.4 Rigorous Derivation of the SCV Approximation

In this section, we present a rigorous derivation of W (sca)(r, θ) by directly computing

U (1)(r, θ) and V (1)(r, θ) (recall the bullet list of Section 4.2). Once the exact W (sca)(r, θ)

is found, we show that it is approximately equal to (4.8) if k1r2 � 1 and |k2|r2 � 1.

Furthermore, a numerical illustration of the SCV approximation is also presented.

If a plane wave, U (inc)(r, θ) = exp(ik1r cos θ), is incident on the host cylinder shown in

Figure 4.1(b), then by proceeding as in paragraph three of Section 4.3, the total field in

region one is U (1)(r, θ) = U (inc)(r, θ) + U (sca)(r, θ), where the scattered field is

U (sca)(r, θ) =
∞∑

n=0

gninA(hc)
n Hn(k1r) cos(nθ) (4.9a)

with

A(hc)
n = − {Jn+1(k1r1); Jn(k2r1)}

{Hn+1(k1r1); Jn(k2r1)} , n ∈ Z+, (4.9b)

and the field in region two is given by

U (2)(r, θ) =
∞∑

n=0

gninB(hc)
n Jn(k2r) cos(nθ). (4.9c)
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The superscript (hc) on the expansion coefficients in (4.9) is meant to remind the reader

that these expansion coefficients are for the host cylinder.

Turning our attention to the cylindrical annulus shown in Figure 4.1(a), if we think of

the cylindrical annulus as the host cylinder into which a scatterer, namely, the cylindrical

void, has been inserted, then, the total fields in regions one, two, and three may be written

as V (1)(r, θ) = U (1)(r, θ) + W (sca)(r, θ), V (2)(r, θ) = U (2)(r, θ) + W (2)(r, θ) and V (3)(r, θ) =

W (3)(r, θ), respectively. Noting that the W -fields also satisfy the 2D Helmholtz equation and

imposing the Sommerfeld radiation condition on W (sca)(r, θ), as well as requiring W (3)(r, θ)

to be regular at r = 0, yields



W (sca)(r, θ)
W (2)(r, θ)
W (3)(r, θ)


 =

∞∑

n=0

gnin




A
(cv)
n Hn(k1r)

B
(cv)
n Jn(k2r) + C

(cv)
n Yn(k2r)

D
(cv)
n Jn(k1r)


 cos(nθ). (4.10)

The superscript (cv) on the expansion coefficients in (4.10) reminds us of the presence of

the cylindrical void. To find the unknown coefficients in (4.10), we require that the V -fields

and their normal derivatives be continuous across the r = r1 interface, as well as the r = r2

interface to obtain




−Hn(k1r1) Jn(k2r1) Yn(k2r1) 0
−H ′n(k1r1) κJ ′n(k2r1) κY ′n(k2r1) 0

0 Jn(k2r2) Yn(k2r2) −Jn(k1r2)
0 κJ ′n(k2r2) κY ′n(k2r2) −J ′n(k1r2)




︸ ︷︷ ︸
=M




A
(cv)
n

B
(cv)
n

C
(cv)
n

D
(cv)
n




=




Jn(k1r1) + A
(hc)
n Hn(k1r1)−B(hc)

n Jn(k2r1)

J ′n(k1r1) + A
(hc)
n H ′n(k1r1)− κB(hc)

n J ′n(k2r1)

−B(hc)
n Jn(k2r2)

−κB(hc)
n J ′n(k2r2)


 , (4.11)

and the prime denotes the derivative with respect to the argument. Solving (4.11) for A
(cv)
n

and using (4.2b) to simplify the result, yields

det(M)A(cv)
n =− {Jn+1(k1r2); Jn(k2r2)}

×
(
A(hc)
n {Hn+1(k1r1);Yn(k2r1)}+ {Jn+1(k1r1);Yn(k2r1)}

)
, (4.12a)
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where

det(M) = {Hn+1(k1r1);Yn(k2r1)} {Jn+1(k1r2); Jn(k2r2)}
− {Hn+1(k1r1); Jn(k2r1)} {Jn+1(k1r2);Yn(k2r2)} . (4.12b)

To simplify (4.12a) further, we use (4.9b) and note that

{Yn+1(k1r1);Yn(k2r1)} {Jn+1(k1r1); Jn(k2r1)}

− {Yn+1(k1r1); Jn(k2r1)} {Jn+1(k1r1);Yn(k2r1)} =

(
2

πk1r1

)2

to obtain

A(cv)
n =

i

det(M)

(
2

πk1r1

)2 {Jn+1(k1r2); Jn(k2r2)}
{Hn+1(k1r1); Jn(k2r1)} , n ∈ Z+. (4.13)

The A
(cv)
n coefficients in (4.13) are the exact expansion coefficients of W (sca)(r, θ). To obtain

the approximate coefficients, we first note that Yn(k2r2) ∼ −iHn(k2r2)) if |k2|r2 � 1 [13],

which allows us to rewrite (4.13) as

A(cv)
n
∼= i

(
2

πk1r1

)2
1

{Hn+1(k1r1); Jn(k2r1)}

×
(

δn
{Hn+1(k1r1);Yn(k2r1)} δn − i {Hn+1(k1r1); Jn(k2r1)}

)
, (4.14)

where δn is given by (4.5). To develop (4.14) further, we note that |δn| � 1 if k1r2 � 1 and

|k2|r2 � 1, as can be seen from the small argument forms of Jn(ξ) and Hn(ξ) [13]. Therefore,

we can expand (4.14) in powers of δn to finally obtain

A(cv)
n ≈

(
2i

πk1r1 {Hn+1(k1r1); Jn(k2r1)}

)2

δn, n ∈ Z+. (4.15)

Notice that the above A
(cv)
n coefficients are identical to the expansion coefficients given in

(4.8) of Section 4.3.

To numerically illustrate the SCV approximation, the far-field pattern of W (sca)(r, θ) in

the forward direction, θ = 0, as a function of k2r2 is show in Figure 4.2. The far-field pattern
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of W (sca)(r, θ) is defined by

F (θ) = −
∞∑

n=0

gnA
(cv)
n cos(nθ). (4.16)

From Figure 4.2, we see that the exact (computed with (4.13)) and the approximate (com-

puted with (4.15)) far-field patterns are in good agreement for small k2r2, say, k2r2 < 0.3.

Also from Figure 4.2, we see that the SCV approximation becomes progressively worse as

k2r2 approaches unity. This is expected as the SCV approximation requires that both k1r2

and k2r2 are much smaller than unity.
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Figure 4.2: The magnitude and phase of the far-field pattern in the forward direction for a
Teflon cylindrical annulus in vacuum, with an outer radius of 10 cm at 100 GHz, is shown.
The permittivity of Teflon at 100 GHz is 2.05 with a negligible loss-tangent [10]. In the
computation of (4.16), we only summed the first N = dk1r2 + 4(k1r2)1/3 + 2e terms [3,
Appendix C].

4.5 Energy Conservation

In this section, we present a relationship between the rate at which the energy is extin-

guished by the cylindrical void from the U (1)(r, θ) field. Also, a numerical example illustrat-

ing that the SCV approximation is in good agreement with the derived energy conservation
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relationship is presented.

We begin by constructing an imaginary concentric cylinder of radius R > r1 and length L

around the host cylinder shown in Figure 4.1(b). Then, the rate W(abs)
U at which the energy

is absorbed within the imaginary concentric cylinder is given by

W(abs)
U = −RL

∫ π

−π
SU · r̂ dθ, (4.17a)

where r̂ = cos θ x̂ + sin θ ŷ (see Figure 4.1), and the time-averaged Poynting vector is given

by

SU =
1

2
Re

[
ic

4πk
U (1)∇

(
U (1)

)∗]
. (4.17b)

In (4.17b), Re denotes the real part, ∗ denotes the complex conjugate, and k = ω/c. Now,

we consider the rate W(abs)
V at which the energy is absorbed by the cylindrical annulus. By

proceeding as before, we immediately obtain

W(abs)
V = −RL

∫ π

−π
SV · r̂ dθ, where SV =

1

2
Re

[
ic

4πk
V (1)∇

(
V (1)

)∗]
. (4.18)

Substituting V (1) = U (1) +W (sca) into (4.18) and using (4.17) to simplify the result yields

Wext = W(abs)
V −W(abs)

U + W(sca)
W , (4.19a)

where

Wext = −RLc
8πk

∫ π

−π
Re
[
iU (1)∇

(
W (sca)

)∗
+ iW (sca)∇

(
U (1)

)∗] · r̂ dθ, (4.19b)

and

W(sca)
W =

RLc

8πk

∫ π

−π
Re
[
iW (sca)∇

(
W (sca)

)∗] · r̂ dθ. (4.19c)

We interpret Wext as the rate at which the energy is extinguished by a scatterer, namely,

the cylindrical void, in the presence of the host cylinder. In other words, it is the rate at

which the energy is depleted by the cylindrical void from the total field, U (1), outside the

host cylinder. Moreover, from (4.19) we see that if the cylindrical annulus is nonabsorbing

(ε2 is purely real) then Wext = W(sca)
W . Finally, substituting U (1)(r, θ) and W (sca)(r, θ) (see
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(4.9a) and (4.10)) into (4.19b), and then integrating the result over θ, yields

Wext = − Lc

2πk

∞∑

n=0

gn

(
Re
[
A(cv)
n

]
+ 2Re

[
A(cv)
n

(
A(hc)
n

)∗])
. (4.20)

We interpret the first term in (4.20) as the rate at which W (sca) extinguishes energy from

U (inc), and the second term as the rate at which W (sca) extinguishes energy from U (sca).

To illustrate that the SCV approximation is in good agreement with the energy conser-

vation principle, we compute Wext using the exact and approximate A
(cv)
n coefficients. Recall

that the exact A
(cv)
n coefficients are given by (4.13), and the approximate coefficients by

(4.15). The results of the above-mentioned computations are shown in Figure 4.3. From

Figure 4.3, we see that the SCV approximation conserves energy to roughly 10 percent for

k2r2 ≤ 1, which does indicate that the SCV approximation is in good agreement with the

energy conservation principle.
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Figure 4.3: The rate Wext (normalized by Lc/8π) at which energy is extinguished by the
cylindrical void from the total field outside the host cylinder is shown as a function of k2r2.
The above plot was produced with the same parameters as the ones described in the caption
of Figure 4.2.
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4.6 Conclusions

In this paper, we investigated a monochromatic plane wave scattering from a solid ho-

mogeneous cylinder (host cylinder) and a cylindrical annulus, referring to the inner part of

the cylindrical annulus as the cylindrical void. It was shown that if the cylindrical void is

thought of as a scatterer inserted into the host cylinder, then the scattered field due to the

cylindrical void may be approximated by the screened cylindrical void (SCV) approxima-

tion, see Section 4.3. The SCV approximation was derived intuitively in Section 4.3 and

rigorously in Section 4.4. Furthermore, a formula for the rate at which energy is depleted by

the cylindrical void from the total field outside the host cylinder was derived in Section 4.5.

The numerical examples in Sections 4.4 and 4.5 showed that the SCV approximation is in

good agreement with the exact solution if the cylindrical void is small.
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CHAPTER 5

SCATTERING FROM A LARGE CYLINDER WITH AN ECCENTRICALLY

EMBEDDED CORE: AN ORDERS-OF-SCATTERING APPROXIMATION
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5.1 Abstract

We develop an orders-of-scattering approximation, termed the “screened cylindrical

void/core” (SCV) approximation, for a composite cylinder. The composite cylinder consists

of a large host cylinder that contains a small, eccentrically embedded, core cylinder. The SCV

approximation is developed via separation of variables in conjunction with addition theorems

for cylindrical functions. We show that the SCV approximation is in good agreement with

the numerically-exact solution. A simple physical interpretation of the SCV approximation

is also presented.

5.2 Introduction

Consider a monochromatic plane wave scattering from an infinitely long homogeneous

and isotropic composite cylinder. The composite cylinder is composed of a small core cylinder

of radius b that is eccentrically embedded into a large host cylinder of radius a, as shown in

Figure 5.1. To experimentally isolate the core cylinder’s contribution to the scattered field of

the composite cylinder, one would measure the total field U (1) outside the composite cylinder

and the total field U(1) outside an identical host cylinder. Then, the difference, V (sca)(r, θ) =
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Figure 5.1: The cross-sectional view of the composite cylinder, with regions labeled by a
number, is shown. Region 1 is the space outside of the composite cylinder (r > a), Region 2
is the host cylinder, and Region 3 is the core cylinder. The origin of the (r, θ) coordinate
system, where −π ≤ θ < π, is centered on the host cylinder, and the origin of the (ρ, φ)
coordinate system, where −π ≤ φ < π, is centered on the core cylinder. The axes of these
two coordinate systems are parallel to each other and the center of the (ρ, φ) coordinate
system is offset by r0 cos θ0 x̂ + r0 sin θ0 ŷ with respect to the origin of the (r, θ) coordinate
system.

U (1)(r, θ) − U(1)(r, θ), would contain the effect that the core cylinder had on the scattered

field. In our recent paper [1], we considered the simplest composite cylinder geometry (the

core cylinder is concentric with the host cylinder) and developed an approximation to V (sca),

which we termed the “screened cylindrical void/core” (SCV) approximation. In this paper,

we derive an analogous formula for an eccentrically stratified composite cylinder, which can

also be interpreted as an orders-of-scattering approximation. Furthermore, we numerically

investigate the accuracy of the SCV approximation when |k2|a ≈ 300 and 0 < |k3|b ≤ 1,

where k2 (k3) is the wavenumber in the host (core) cylinder.

Scattering by an eccentrically stratified composite cylinder has previously been considered

in the literature in various contexts [2–4] and by various techniques [5–7]. In the electromag-

netic context, a perturbation series solution has been constructed in powers of (k3−k2) [8, 9],
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b [10], and eccentricity [11, 12] by using separation of variables. An “exact” treatment based

on separation of variables with a truncation of the resultant infinite size matrix is also avail-

able, e.g. in [13]. Our orders-of-scattering approach is also based on separation of variables,

but the resultant power series expansion of the solution is different from the ones mentioned

above.

There are many diverse applications where the scattering by an eccentrically stratified

composite cylinder is important; for example, see [4, 8, 9] and references therein. As men-

tioned in [1], we are particularly interested in using the composite cylinder to study Anderson

localization [14–16] at millimeter/sub-millimeter wavelengths. At these wavelengths, both

the amplitude and the phase of the electromagnetic field can be easily measured with a

vector network analyzer [17], and the preparation of disordered samples is straightforward

with standard computer-numerically-controlled milling techniques. For example, a sample

may be prepared by drilling small holes in a large Teflon (ultra low-loss material) cylinder.

Furthermore, essentially arbitrary realizations of the same random disorder may be gener-

ated by putting the sample on a rotational stage and illuminating it from the side. When

the number of small scatterers is large, say, over a thousand, then what is important is the

rate at which the scatterer extinguishes the energy from the incident field, rather than the

geometrical shape/size of each individual scatterer [18, 19]. Practically, the host cylinder

needs to be rather large (a ∼ 10 cm) in order to accommodate thousands of small holes

(b ∼ 0.3 mm); hence the numerical examples considered in this paper are for k2a ≈ 300 and

0 < k3b ≤ 1. Therefore, the physical insight gained from considering the scattering by a

single core cylinder eccentrically embedded into a large host, as discussed in this paper, may

be of benefit in understanding the experimental model described above. Also, the approach

taken in this paper may pave the way for methods that may accurately describe the full

envisioned experiment, where thousands of core cylinders are eccentrically embedded into

one large host cylinder.
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5.3 Background and Conventions

Throughout the paper, we will use the Gaussian unit system, and we will assume that all

fields are harmonic in time with a exp(−iωt) time factor, where ω is the angular frequency.

Furthermore, we will assume that all fields are polarized in the positive ẑ-direction. The

positive ẑ-direction is out of the page in Figure 5.1. All media considered in this paper

are assumed to be non-magnetic, and the permittivity of the host and the core cylinder are

denoted by ε2 and ε3, respectively. Furthermore, ε1 denotes the permittivity of the space

outside the composite cylinder (Region 1 in Figure 5.1) and is assumed to be purely real,

whereas ε2 and ε3 may be complex.

Let us note that all fields in this paper satisfy the two-dimensional (2D) Helmholtz equa-

tion. The radial solution of the 2D Helmholtz equation is composed of a linear combination

of an integer order Bessel function of the first kind and an integer order Hankel function of

the first kind, which we denote by Jm(ξ) and Hm(ξ), respectively. The functions Jm(ξ) and

Hm(ξ) satisfy the Wronskian relationship [20, §9.1]

Jm(ξ)H ′m(ξ)− J ′m(ξ)Hm(ξ) =
2i

πξ
, (5.1a)

and the recurrence relation [20, §9.2]

Ψ′m(ξ) =
m

ξ
Ψm(ξ)−Ψm+1(ξ), (5.1b)

where Ψ denotes J or H, and the prime denotes the derivative with respect to the argument.

It is convenient to introduce the shorthand curly bracket notation, {Ψm+1(ξ); Φm(η)}, by

which we mean

{Ψm+1(ξ); Φm(η)} ≡ Ψm+1(ξ)Φm(η)− η

ξ
Ψm(ξ)Φm+1(η).

For example, if Ψ and Φ satisfy (5.1b), then

{Ψm+1(ξ); Φm(η)} =
η

ξ
Ψm(ξ)Φ′m(η)−Ψ′m(ξ)Φm(η) (5.1c)
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Lastly, we note the Jacobi-Anger expansion of a plane wave [21, p. 37], namely,

eiξ cos θ =
∑

m

imJm(ξ)eimθ, (5.2)

where
∑
m

indicates the summation from m = −∞ to m =∞.

5.4 Host Cylinder

Consider a unit plane wave, U(inc) = exp (ik1r cos θ), incident from Region 1 onto the host

cylinder, see Figure 5.1 with b = 0 (i.e., without the core cylinder). Then, after decomposing

the total field in Region 1 as U(1) = U(inc) + U(sca), we have [1]

[
U(sca)(r, θ)
U(2)(r, θ)

]
=
∑

m

im
[
AmHm(k1r)
BmJm(k2r)

]
eimθ, (5.3)

where ki =
√
εiω/c for i = 1, 2 and c is the speed of light in vacuum. In (5.3), U(2) denotes

the total field inside the host cylinder, and the expansion coefficients are given by

Am = − {Jm+1(k1a); Jm(k2a)}
{Hm+1(k1a); Jm(k2a)} , (5.4a)

Bm =
−2i

πk1a {Hm+1(k1a); Jm(k2a)} . (5.4b)

5.5 Composite Cylinder

If the plane wave U(inc) is incident from Region 1 onto the composite cylinder shown in

Figure 5.1, then the total fields in Regions 1, 2, and 3 may be written as

U (1)(r, θ) = U(1)(r, θ) + V (sca)(r, θ), (5.5a)

U (2)(r, θ; ρ, φ) = U(2)(r, θ) + V (2)(r, θ; ρ, φ), (5.5b)

and

U (3)(ρ, φ) =
∑

m

imDmJm(k3ρ)eimφ, (5.5c)

respectively, where
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V (sca)(r, θ) =
∑

m

imAmHm(k1r)e
imθ, (5.5d)

V (2)(r, θ; ρ, φ) =
∑

m

im
(
BmJm(k2r)e

imθ + CmHm(k2ρ)eimφ
)
, (5.5e)

and k3 =
√
ε3ω/c. In writing (5.5), we are thinking of the composite cylinder as the host

cylinder into which a scatterer (the core cylinder) has been inserted. Also, notice that we

required U (3)(ρ, φ) to be finite at ρ = 0, and imposed the Sommerfeld radiation (outgoing

cylindrical wave) condition on V (sca)(r, θ). To find the unknown expansion coefficients in

(5.5), we require that the electric field and its normal derivative be continuous across the

ρ = b and r = a interfaces.

To apply the continuity conditions at the ρ = b interface, we first re-express U (2)(r, θ; ρ, φ)

solely in terms of the (ρ, φ) coordinate system by using Graf’s addition theorem [21, §2.5],

[20, §9.2]. Namely, using

Jm(k2r)e
imθ =

∑

n

Jm−n(k2r0)ei(m−n)θ0Jn(k2ρ)einφ,

and (5.3) with (5.2), we obtain

U (2)(ρ, φ) =
∑

n

i−nJn(k2ρ)einφ
∑

m

Tnm (Bm +Bm) +
∑

m

imCmHm(k2ρ)eimφ,

where Tnm = im+nJm−n(k2r0)ei(m−n)θ0 . Then, requiring that U (2) = U (3) and ∂
∂ρ
U (2) = ∂

∂ρ
U (3)

on ρ = b yields

DpJp(k3b) = CpHp(k2b) + (−1)pJp(k2b)
∑

m

Tpm (Bm +Bm) , (5.6a)

and

k3

k2

DpJ
′
p(k3b) = CpH

′
p(k2b) + (−1)pJ ′p(k2b)

∑

m

Tpm (Bm +Bm) , (5.6b)

respectively. Eliminating Dp from (5.6) yields

Cp = (−1)p∆p

∑

m

Tpm (Bm +Bm) , (5.7a)
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where

∆p = − {Jp+1(k3b); Jp(k2b)}
{Jp+1(k3b);Hp(k2b)}

. (5.7b)

Similarly, to apply the continuity conditions at the r = a interface, we first re-express

U (2)(r, θ; ρ, φ) solely in terms of the (r, θ) coordinate system by using Graf’s addition theorem

for Hm(k2ρ)eimφ [21, §2.5], [20, §9.2]. Namely, using

Hm(k2ρ)eimφ =
∑

n

(−1)m−nJm−n(k2r0)ei(m−n)θ0Hn(k2r)e
inθ

for r > r0, and (5.3) with (5.2), we obtain

U (2)(r, θ) =
∑

m

im (Bm +Bm) Jm(k2r)e
imθ +

∑

n

inHn(k2r)e
inθ
∑

m

(−1)mTnmCm,

for r0 + b < r < a. Then, requiring that U (1) = U (2) and ∂
∂r
U (1) = ∂

∂r
U (2) on r = b yields

(Bp +Bp) Jp(k2a) +Hp(k2a)
∑

m

(−1)mTpmCm = Jp(k1a) + (Ap + Ap)Hp(k1a), (5.8a)

and

(Bp +Bp) J
′
p(k2a) +H ′p(k2a)

∑

m

(−1)mTpmCm =
k1

k2

[
J ′p(k1a) + (Ap + Ap)H

′
p(k1a)

]
, (5.8b)

respectively. To solve (5.8) for Ap in terms of Cm, we eliminate (Bp +Bp) from (5.8), and

then use (5.1a) and (5.4) to rewrite the result as

Ap = Bp
∑

m

(−1)mTpmCm. (5.9)

To solve (5.8) for Bp in terms of Ap, we eliminate Cm from (5.8), and use (5.1a) to obtain

2i

πk1a
(Bp +Bp) = (Ap + Ap) {Hp+1(k1a);Hp(k2a)}+ {Jp+1(k1a);Hp(k2a)} . (5.10)

To simplify (5.10) further, we substitute (5.4) into (5.10) and note that
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{Jp+1(k1a);Hp(k2a)} {Hp+1(k1a); Jp(k2a)}

− {Jp+1(k1a); Jp(k2a)} {Hp+1(k1a);Hp(k2a)} =

(
2

πk1a

)2

to obtain

Bp =
πk1a

2i
{Hp+1(k1a);Hp(k2a)}Ap. (5.11)

Finally, substituting (5.11) into (5.7a), and putting the result into (5.9) yields

∑

n

(δmn − Fmn)An = Gm, (5.12a)

where

Fmn =
πk1a

2i
Bm

(∑

p

Tmp∆pTpn

)
{Hn+1(k1a);Hn(k2a)} , (5.12b)

Gm =
∑

n

Bm

(∑

p

Tmp∆pTpn

)
Bn, (5.12c)

and δmn denotes the Kronecker delta function.

Notice that in (5.12) the core cylinder parameters, namely, k3 and b, are solely contained

in ∆p, see (5.7b). Furthermore, from (5.7b) and the small argument forms of Jp and Hp, we

see that if the core cylinder is small, then so is ∆p. This suggests that (5.12a) can be solved

via the Neumann series (Taylor series expansion, if you will), i.e.,

A = (I− F)−1 G =
∞∑

`=0

F`G, (5.13)

where An, Fmn, Gm are the elements of A, F, G, respectively, and I is the identity matrix.

The Neumann series in (5.13) converges, provided that the spectral radius of F is less than

one [22, §4.3]. The spectral radius of F for a large host cylinder, |k2|a ≈ 300, with an

eccentrically embedded core cylinder is shown in Figure 5.2. From Figure 5.2, we see that

the spectral radius of F is indeed much smaller than one and thus, we expect the Neumann

series in (5.13) to converge rapidly. We will discuss the spectral radius of F further in Sec. 5.7,

but for now turn our attention to the physical interpretation of the SCV approximation.
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Figure 5.2: The spectral radius of F at 100 GHz for a Teflon host cylinder (a = 10 cm)
with an eccentrically embedded quartz core cylinder is shown as a function of |k3|b, and
eccentricity, r0/a (with θ0 = 0). The permittivity of Teflon and quartz at 100 GHz is 2.1 and
3.8 with a negligible loss-tangent [23], respectively.

5.6 The SCV Approximation and Its Physical Interpretation

If only the ` = 0 term is retained in (5.13), we obtain the SCV approximation, namely,

Am ∼= Gm =
∑

n

Bm

(∑

p

Tmp∆pTpn

)
Bn. (5.14)

To interpret (5.14) physically, we consider the following three-step scattering process:

1. If a unit plane wave, U(inc) = exp (ik1r cos θ), is incident on the host cylinder, then the

field inside the host cylinder, U(2)(r, θ), is given by (5.3). Rewriting U(2) terms of the

(ρ, φ) coordinate system yields

U(2) (ρ, φ) =
∑

n

i−nJn(k2ρ)einφ
∑

m

TnmBm. (5.15)
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2. If we use (5.15) as an incident field for the core cylinder, then the resulting scattered

field is

∑

m

imC̃mHm(k2ρ)eimφ, (5.16a)

and the field inside the core cylinder is

Ũ (3)(ρ, φ) =
∑

m

imD̃mJm(k3ρ)eimφ. (5.16b)

Substituting (5.15) and (5.16) into the continuity conditions for the ρ = b interface,

and eliminating D̃m from the resultant two equations, yields

C̃p = (−1)p∆p

∑

m

TpmBm. (5.17)

3. Finally, if we use (5.16a) with (5.17) as an incident field (from within the host cylinder)

on the r = a interface, then there will be an outgoing field outside the host cylinder

given by

Ṽ (sca)(r, θ) =
∑

m

imÃmHm(k1r)e
imθ, (5.18a)

and a regular (finite at r = 0) field inside the host cylinder given by

∑

m

imB̃mJm(k2r)e
imθ. (5.18b)

Rewriting (5.16a) in terms of the (r, θ) coordinate system and substituting it, as well

as (5.18), into the continuity conditions for the r = a interface, and eliminating B̃m

from the resultant two equations yields

Ãm =
∑

n

Bm

(∑

p

Tmp∆pTpn

)
Bn. (5.19)

By comparing (5.19) with (5.14), we conclude that the SCV approximation can be viewed

as an orders-of-scattering approximation. Moreover, from the above three-step scattering

process, we see that TpnBn is the “screening” effect of the host cylinder on U(inc) and BmTmp

is the “screening” effect of the host cylinder on Ṽ (sca). These two screening effects are identical
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if the core cylinder is concentric with the host cylinder, as we have shown in [1]. To see

that (5.19), or equivalently (5.14), reduces to our previous result, we note that Tpn = in+pδpn

and Tmp = ip+mδmp when r0 = 0, and thus, the sums in (5.19) collapse and we obtain

Ãm = B2
m∆m.

5.7 Numerical Examples and Limitations

In practice, the computation of the Am coefficients via (5.12) or (5.14) requires the

truncation of the infinite sums, as well as the index m. From (5.12b), (5.12c), and (5.14),

we see that the sum over p is controlled by the small core cylinder parameters, namely, ∆p.

This observation suggests that the summation over p be terminated at pmax (i.e., |p| ≤ pmax),

where pmax is given by the well-known Wiscombe’s criterion for small scatterers [24], namely,

pmax =
⌈
k2b+ 4 (k2b)

1/3 + 1
⌉
. (5.20a)

The sum over n, as well as the index m, are controlled by the large host cylinder and thus,

they are terminated at Nmax (i.e., |n| ≤ Nmax and |m| ≤ Nmax), where Nmax is given by the

Wiscombe’s criterion for relatively large scatterers [24], namely,

Nmax =
⌈
k1a+ 4.05 (k1a)1/3 + 2

⌉
. (5.20b)

We note that a termination criterion in terms of prescribed relative error has become available

recently [25], but for our purposes, the termination condition given by (5.20) will be sufficient.

To numerically illustrate the accuracy of the SCV approximation, we compute the relative

error in the rate at which the energy is extinguished by the core cylinder in the presence of

the host cylinder. The rate at which the energy (per unit length of the composite cylinder)

is depleted by the core cylinder from the total field, U(1), outside the the host cylinder is

given by [1]

Qext = − c2

2πω

Nmax∑

m=−Nmax

(
Re
[
Am
]

+ 2Re
[
AmAm

∗]), (5.21)
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where Re denotes the real part and ∗ denotes the complex conjugate. We compute the

SCV approximate and numerically-exact (≈ 7 significant digits) Qext by using (5.21) with

(5.14) and (5.21) with (5.13), respectively. The top row of Figure 5.3 shows that the SCV

approximation is in good agreement with the numerically-exact solution, and the bottom

row of Figure 5.3 demonstrates that the Neumann series in (5.13) converges rapidly as one

would expect from the spectral radius of F, see Figure 5.2. Furthermore, from Figure 5.3 we

see that the relative error in Qext is almost independent of the angular position of the core

cylinder but does depend on its radial position, see Figure 5.3 with r0/a > 0.7.

The dependence of the relative error in Qext on the radial position of the core cylinder

may be explained in terms of the internal resonances of the host cylinder. These resonances

are often referred to as Mie resonances, morphological resonances, whispering-gallery modes,

or natural/eigen modes. At 100 GHz, the 10 cm host cylinder is about hundred times larger

than the wavelength of the incident light and thus, the interaction of light with the host

cylinder can be described by ray theory. If a ray inside the host cylinder strikes the surface

of the host cylinder above the critical angle, then the ray’s trajectory will be bounded by a

cylindrical annulus with outer radius a and inner radius rcaustic. To find the caustic radius,

rcaustic, we set the ray’s angular momentum |k2,θ|r~ equal to |m|~ (the angular momentum

of the mth eigenmode) and note that k2
2 = k2

2,θ + k2
2,r to obtain

rcaustic =

∣∣∣∣
m

k2

∣∣∣∣ . (5.22a)

In the derivation of (5.22a), we used the fact that the radial component of the wavevector

must vanish on rcaustic, i.e., k2,r(r = rcaustic) = 0 [26, 27]. Furthermore, we can deduce the

range of potentially excited eigenmodes of the host cylinder as follows. If a ray inside the host

cylinder strikes the surface at an angle γ with respect to the normal, then by equating the

ray’s and modal angular momenta (|m| = |k2|a sin γ), and using the total internal reflection

condition,
√
ε1/ε2 ≤ sin γ ≤ 1, we obtain

|k1|a ≤ m ≤ |k2|a. (5.22b)
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Figure 5.3: The relative error in Qext (in percent) is shown as a function of |k3|b and eccen-
tricity, r0/a, for various θ0 angles. The top row shows the relative error if only the ` = 0 term
is retained in (5.13), i.e., the SCV approximation, and the bottom row shows the relative
error if the ` = 0 and ` = 1 terms are retained. The above plot was produced with the same
parameters as the ones described in the caption of Figure 5.2
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Finally, from (5.22), we see why the SCV approximation worsens when the radial location

of the core cylinder exceeds the caustic radius, see Figure 5.3 for r0/a ≥ rcaustic/a ≈ 0.7.

If the frequency of the incident wave corresponds to one of the eigenfrequencies of the host

cylinder, then the Neumann series in (5.13) will fail to converge only when r0 ≥ rcaustic. For

example, the mode m = 228 is excited in resonance at approximately 99.823859 GHz, i.e.,

the denominator of B228 vanishes at this frequency10, and the spectral radius of F exceeds

unity when r0/a ≤ rcaustic/a = 228/(k2a) ≈ 0.75 as shown in Figure 5.4. Moreover, from

Figure 5.2 we see that the SCV approximation remains valid even at resonance frequency,

provided that r0/a < rcaustic/a ≈ 0.75.
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Figure 5.4: The spectral radius of F at eigenfrequency 99.823859 GHz is shown as a function
|k3|b and eccentricity, r0/a (with θ0 = 0). The above plot was produced with the same
parameters as the ones described in the caption of Figure 5.2

10Strictly speaking, this occurs at a complex eigenfrequency, where the imaginary part of the eigenfrequency
is related to the spectral width of the mode [28].
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5.8 Conclusions

In this paper, we have extended the screen cylindrical void/core (SCV) approximation [1]

to a case where the small core cylinder is eccentrically embedded into a large host cylinder.

We physically interpreted the SCV approximation as the screening effect of the host cylinder

on the incident plane wave and the wave scattered by the core cylinder (see Section 5.6).

Furthermore, we showed that the SCV approximation may be thought of as an orders-of-

scattering approximation.

The accuracy of the SCV approximation was demonstrated numerically for an envisioned

localization experiment, where a large host cylinder (k2a ≈ 300) contains a small (k3b ∼ 1)

eccentrically embedded core cylinder. In general, the SCV approximation was shown to be

in good agreement with the exact solution, even at the eigenfrequencies of the host cylinder.

We showed that if the incident frequency corresponds to one of the eigenfrequencies of the

host cylinder, then the SCV approximation remains valid, provided that the eccentricity

r0/a does not exceed the caustic radius of the mode (see Section 5.7). This condition was

derived by considering the interplay between the ray and wave pictures of the scattering

process. Moreover, the ray picture offered a valuable physical insight into the validity of the

SCV approximation.
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CHAPTER 6

GENERALIZATION OF THE SCV APPROXIMATION TO A CLUSTER OF

ECCENTRICALLY EMBEDDED CORES

The SCV approximation derived for a composite cylinder with one eccentrically embedded

core cylinder may be generalized to a case of N eccentrically embedded core cylinders via

the so-called cluster T -matrix. The cluster T -matrix [1, 2] [3, §5.9] [4, §7.11] relates the

expansion coefficients of the wave incident on the cluster to the expansion coefficients of the

wave scattered by the cluster. In other words, the cluster T -matrix allows us to treat all

of the eccentrically embedded cylinders as one unit. Therefore, the derivation of the SCV

approximation for N eccentrically embedded core cylinders will closely parallel the derivation

in Chapter 5.

The composite cylinder with N eccentrically embedded core cylinders is shown in Fig-

ure 6.1, where a is the radius of the host cylinder and the radius of the ith core cylinder is

denoted by bi. In what follows, it is convenient to let

Ψn(kjr) = Hn(kjr)e
inθ, (6.1a)

Ψ̂n(kjr) = Jn(kjr)e
inθ, (6.1b)

where kj is the wavenumber in the jth region, and express Graf’s addition theorems [4, §2.5]

[5, §10.23] in the notation of (6.1) as

Ψ̂m(kw) =
∑

n

Ψ̂m−n(ku)Ψ̂n(kv), (6.2a)

Ψm(kv) =
∑

n

Ψm−n(−ku)Ψ̂n(kw), |w| < |u|, (6.2b)

Ψm(kv) =
∑

n

Ψ̂m−n(−ku)Ψn(kw), |w| > |u|. (6.2c)
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Figure 6.1: The cross-sectional view of the composite cylinder is shown. Region N + 2 is
the space outside of the composite cylinder (r > a), region N + 1 is the host cylinder, and
regions 1, . . . , N are the core cylinders. The origin of the global (r, θ) coordinate system,
where −π ≤ θ < π, is centered on the host cylinder, and the origin of the local (ρi, φi)
coordinate system, where −π ≤ φi < π, is centered on the ith core cylinder. The axes of the
(r, θ) and (ρi, φi) coordinate systems are parallel to each other and the center of the (ρi, φi)
coordinate system is offset by ri with respect to the origin of the (r, θ) coordinate system.

6.1 Host Cylinder With and Without Core Cylinders

If we assume that the incident wave on the host cylinder is regular (non-singular) and

satisfies the 2D Helmholtz equation, then the total field outside and inside the host cylinder

is given by

U(N+2)(r) =
∑

m

AmΨm(kN+2r) + DmΨ̂(kN+2r), (6.3a)

U(N+1)(r) =
∑

m

BmΨ̂(kN+1r), (6.3b)

respectively. The expansion coefficients in (6.3) are given by
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Am = − {Jm+1(kN+2a); Jm(kN+1a)}
{Hm+1(kN+2a); Jm(kN+1a)}Dm, (6.4a)

Bm =
−2i

πkN+2a {Hm+1(kN+2a); Jm(kN+1a)}Dm, (6.4b)

where the Dm coefficients are assumed to be the known expansion coefficients of the incident

wave. If we insert the cluster of core cylinders into the host cylinder in the presence of the

U(N+2)(r) and U(N+1)(r) fields, then the new fields are given by

U (N+2)(r) = U(N+2)(r) + V (sca)(r), (6.5a)

U (N+1)(r) = U(N+1)(r) + V (N+1)(r), rmax ≤ r < a, (6.5b)

where

V (sca)(r) =
∑

m

AmΨm(kN+2r), (6.5c)

V (N+1)(r) =
∑

m

[
BmΨ̂m(kN+1r) + CmΨm(kN+1r)

]
, (6.5d)

and rmax is the radius of the smallest imaginary cylinder that circumscribes the cluster of core

cylinders, see Figure 6.1. It is important to stress that the rmax ≤ r < a condition in (6.5b)

allows us to treat the cluster of core cylinders as one entity. Physically, we may interpret

U(N+1)(r) +
∑

mBmΨ̂m(kN+1r) as the incident field on the cluster and
∑

mCmΨm(kN+1r)

as the field scattered by the cluster. Of course, the field we experimentally measured by the

procedure outlined in Section 5.2 is V (sca)(r) and not
∑

mCmΨm(kN+1r).

To find the unknown expansion coefficients of the experimentally measurable field, we

require the total field and its normal derivative to be continuous across the r = a interface,

to obtain

DmJm(kN+2a) + (Am + Am)Hm(kN+2a) = (Bm +Bm) Jm(kN+1a) + CmHm(kN+2a), (6.6a)
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DmJ
′
m(kN+2a) + (Am + Am)H ′m(kN+2a)

=
kN+1

kN+2

[
(Bm +Bm) J ′m(kN+1a) + CmH

′
m(kN+2a)

]
. (6.6b)

Eliminating (Bm +Bm) from (6.6), and using (6.4) with (5.1a) to simplify the result, yields

DmAm = BmCm. (6.7a)

Eliminating Cm from (6.6) and then using (6.4), (5.1a), and

{Jm+1(kN+2a);Hm(kN+1a)} {Hm+1(kN+2a); Jm(kN+1a)}

− {Jm+1(kN+2a); Jm(kN+1a)} {Hm+1(kN+2a);Hm(kN+1a)} =

(
2

πkN+2a

)2

to simplify the result, yields

Bm =
πkN+2a

2i
{Hm+1(kN+2a);Hm(kN+1a)}Am. (6.7b)

The expansion coefficients, (Bm +Bm), of the wave incident onto the cluster of core cylinders

must be linearly related to the expansion coefficients, Cm, of the wave scattered by the

cluster because the Maxwell equations, material properties of the media, and the continuity

conditions are all linear. Traditionally, this relationship is denoted by the so-called T -matrix

(transition matrix) [6–9]. Thus, from the definition of the T -matrix, we have

Cm =
∑

n

Tmn (Bn +Bn) . (6.8)

Combining (6.7) with (6.8) yields

∑

n

(δmn − Fmn)An = Gm, (6.9a)

where

Fmn =
1

Dm

[
πkN+2a

2i
BmTmn {Hn+1(kN+2a);Hn(kN+1a)}

]
, (6.9b)

Gm =
1

Dm

∑

n

BmTmnBn, (6.9c)
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and δmn denotes the Kronecker delta function. Let us compare the system of equations for

the cluster of core cylinders (6.9) to the system of equations for one eccentrically embedded

core cylinder (5.12). In (6.9), the physical and morphological properties of the cluster of

core cylinders are solely contained in the T -matrix. Likewise, in (5.12) the effects of one

eccentrically embedded core cylinder on the scattered field are solely contained in the paren-

theses term11 in (5.12). In other words, the T -matrix in (6.9) plays the same role as the

parentheses term in (5.12), and thus, we conclude that (6.9) is identical12 to (5.12). In light

of this conclusion, it follows from Chapter 5 that (6.9) may be solved via the Neumann series,

where the first term in the series will give the SCV approximation. The SCV approxima-

tion (an orders-of-scattering approximation) and its physical interpretation were presented

in Section 5.6 and we will not repeated here.

We now turn our attention to the cluster T -matrix that appears in (6.9). If we denote

the T -matrix for the ith core cylinder as T(i), then, as shown in the next section, the cluster

T -matrix will be composed of T(i=1,...,N). The explicit form of T(i) may be deduced by

inspection of (6.4a) to be

T (i)
nm = − {Jn+1(kN+1bi); Jm(kibi)}

{Hn+1(kN+1bi); Jm(kibi)}
δnm, i = 1, . . . , N. (6.10)

6.2 Cluster T -matrix

To derive an expression for the cluster T -matrix, we analyze the fields inside the imaginary

cylinder of radius rmax, which contains the core cylinders, see Figure 6.1. The scattered field

produced by the ith core cylinder is

∑

m

C(i)
m ψ(kN+1ρi), |ρi| > bi, (6.11)

11The Tmp and Tpn quantities in
(∑

p Tmp∆pTpn

)
are not related to the T -matrix. This rather unfortunate

notation is a mere coincidence.
12The appearance of 1/Dm in (6.9b) and (6.9c) is not important, since we could have absorbed it into the

definition of V (sca)(r) via Am → DmAm as was done in Chapter 5.

98



and the “external” incident field on the ith cylinder is

∑

m

(Bm +Bm) Ψ̂m(kN+1r). (6.12)

According to Foldy’s principle [10], the effective incident field on the ith core cylinder consists

of the external incident field and the scattered field produced by all other core cylinders. In

other words, the effective incident field on the ith core cylinder is given by

∑

m

(Bm +Bm) Ψ̂m(kN+1r) +
N∑

j=1
j 6=i

∑

m

C(j)
m Ψ(kN+1ρj). (6.13a)

Using (6.2a), with w = r, u = ri, v = ρi, and (6.2b) with u = ri − rj, v = ρj, w = ρi, to

express Ψ̂m(kN+1r) and Ψ(kN+1ρj) in (6.13a) in the local coordinate system of the ith core

cylinder yields

∑

n


B

(i)
n +B(i)

n +
N∑

j=1
j 6=i

∑

m

C(j)
m Ψm−n(kN+1(rj − ri))




︸ ︷︷ ︸
expansion coefficients of the effective incident field

Ψ̂n(kN+1ρi), i = 1, . . . , N, (6.13b)

where

B(i)
n +B(i)

n =
∑

m

(Bm +Bm) Ψ̂m−n(kN+1ri). (6.14)

The expansion coefficients of the scattered field produced by the ith core cylinder are related

to the expansion coefficients of the effective incident field via the T -matrix for the ith core

cylinder and thus, we have

C
(i)
` =

∑

p

T
(i)
`p


B

(i)
p +B(i)

p +
N∑

j=1
j 6=i

∑

m

O(i,j)
pm C(j)

m


 , i = 1, . . . , N, (6.15)

where

O(i,j)
pm = Ψm−p(kN+1(rj − ri)). (6.16)
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If we let

BBB =




BBB(1) + B(1)

BBB(2) + B(2)

...
BBB(N−1) + B(N−1)

BBB(N) + B(N)



, (6.17a)

CCC =




C(1)

C(2)

...
C(N−1)

C(N)



, (6.17b)

TTT =




T(1) 0 · · · 0 0
0 T(2) · · · 0 0

0 0
. . . 0 0

0 0 · · · T(N−1) 0
0 0 · · · 0 T(N)



, (6.17c)

and

OOO =




0 O(1,2) · · · O(1,N−1) O(1,N)

O(2,1) 0 O(2,3) · · · O(2,N)

· · · · · · · · · · · · · · ·
O(N−1,1) O(N−1,2) · · · 0 O(N−1,N)

O(N,1) O(N,2) · · · O(N,N−1) 0



, (6.17d)

then, in the above block matrix notation, (6.15) reads

[I− TTTOOO]CCC = TTTBBB, (6.18)

where I is the identity matrix. Solving (6.18) for CCC and using [I− TTTOOO]−1
TTT = [TTT−1 (I− TTTOOO)]

−1

to simplify the result, yields

CCC = TTT BBB, (6.19a)

where

TTT =
[
TTT−1 −OOO

]−1
. (6.19b)

We will finish the derivation of the cluster T -matrix shortly, but first, a few computational

remarks.
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(i) From (6.10), we see that the T -matrix for the ith core cylinder is diagonal, and thus,

so is TTT. In other words, the computation of TTT−1 in (6.19b) is trivial.

(ii) The core cylinders must be labeled in such a way so that the dominant (numerically

large) O(i,j) block matrices appear near the main diagonal of the OOO matrix. This is im-

portant for numerical stability, as diagonally dominant matrices tend to be numerically

stable during inversion.

(iii) It is tempting to compute TTT by expanding [TTT−1 −OOO]
−1

in the Neumann series, i.e.,

[
TTT−1 −OOO

]−1
= TTT + TTTOOOTTT + TTTOOOTTTOOOTTT + · · · , (6.20)

but this should be avoided. The right-hand side of (6.20) may be interpreted as an

orders-of-scattering approximation and thus, a large number of terms will need to be

retained during the onset of localization. Loosely speaking, localization occurs when the

wave becomes trapped (undergoes a large number of bounces) inside the cluster of core

cylinders. However, it is perfectly sensible to use an orders-of-scattering approximation

outside the cluster of core cylinders, as we have done in Section 6.1.

Returning to the derivation of the cluster T -matrix, if we partition the TTT matrix into

N2 block matrices and denote these block matrices by TTT (i,j), where i = 1, . . . , N and j =

1, . . . , N , then (6.19) may be written as

C(i) =
N∑

j=1

TTT (i,j)
(
BBB(j) + B(j)

)
. (6.21)

Substituting (6.14) into (6.21) yields

C(i) =
N∑

j=1

TTT (i,j)ÔOO(j)(rj) (BBB + B) , (6.22)

where

Ô(j)
nm(rj) = Ψ̂m−n(kN+1rj). (6.23)
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The expansion coefficients of the scattered field produced by the ith core cylinder, C(i), are

related to the C coefficients appearing in the second term on the right hand side of (6.5d).

To establish this relationship, we express (6.11) in the global coordinate system by using

(6.2c) with u = ri, v = ρi, and w = r to obtain

∑

n

[∑

m

Ψ̂m−n(−kN+1ri)C
(i)
m

]
Ψn(kN+1r), |r| > |ri|, i = 1, . . . , N. (6.24)

Summing (6.24) over i yields the desired relationship, namely,

C =
N∑

i=1

ÔOO(i)(−ri)C
(i). (6.25)

Finally, multiplying (6.22) by ÔOO(i)(−ri), then summing the result over i, and using (6.25)

yields the cluster T -matrix, namely,

T =
N∑

i=1

N∑

j=1

ÔOO(i)(−ri)TTT (i,j) ÔOO(j)(rj). (6.26)

6.3 Connection with Localization and Random Matrices

If we let the radius of the host cylinder go to infinity, and the radius of each core cylinder

shrink to zero, then the scattering geometry shown in Figure 6.1 may be treated by Foldy’s

method [10]. In this extreme limit, we can treat each core cylinder as a dipole, with the field

scattered by each core cylinder given by

k2
N+1piG(r, ri), i = 1, . . . , N, (6.27)

where pi is the dipole moment of the ith core cylinder, and G(r, ri) is the free-space Green’s

function. The free-space Green’s function is given by [11, §2.2]

G(r, ri) =
i

4
H0(kN+1|r− ri|), (6.28)

where we used the “negative Dirac delta function” convention in the definition of Green’s

function, i.e.,

(
∇2 + k2

N+1

)
G(r, r′) = −δ(r− r′).
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To find the unknown dipole moments in (6.27), we proceed as in Section 6.2 by considering

the effective incident field, U (eff)(ri), on the ith dipole. The effective field incident on the ith

dipole consists of the external incident field U (inc), as well as the fields produced by all other

dipoles; thus, we have

U (eff)(ri) = U (inc)(ri) +
N∑

j=1
j 6=i

k2
N+1pjG(ri, rj), i = 1, . . . , N. (6.29)

If we assume, as Foldy did, that the dipole moment is proportional to the effective incident

field13, i.e.,

pi = %iU
(eff)(ri), (6.30)

then (6.29) becomes

U (eff)(ri) = U (inc)(ri) +
N∑

j=1
j 6=i

k2
N+1%jU

(eff)(rj)G(ri, rj), i = 1, . . . , N. (6.31)

In principle, the proportionality constant %i is arbitrary. However, if we assume that each

core cylinder, as well as the host medium, is non-absorbent, then conservation of energy

mandates that %i must satisfy [12] [4, §8.3.1]

ik2
N+1%i

2
= exp(2iαi)− 1, (6.32)

where αi is the phase angle of %i. Substituting (6.28), (6.32) into (6.31), and assuming that

%i is the same for each dipole (i.e., identical core cylinders) yields

FU(eff) = U(inc), (6.33)

where

F = I− e2iα − 1

2
GGG, U(eff) =




U(eff)(r1)
U(eff)(r2)

...
U(eff)(rN)


 , U(inc) =




U (inc)(r1)
U (inc)(r2)

...
U (inc)(rN)


 , (6.34a)

13This assumption forces us to treat each core cylinder as an isotropic scatterer. It should be noted that it
is possible to extend Foldy’s method to anisotropic scatterers, as was shown by Martin [4, §8.3.3].
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and

Gij =

{
H0(kN+1|ri − rj|) for i 6= j

0 for i = j
. (6.34b)

From (6.33) and (6.30), we see that if F has a zero eigenvalue, then U(eff) is non-zero even if

U(inc) = 0. Clearly, this state corresponds to perfect localization; we define perfect localiza-

tion by vanishing of the total (scattered + incident) time-averaged energy density sufficiently

far away from the cluster of core cylinders. It has been proven by Rusek et al. [12] that this

perfect localized state cannot exist for a finite N . Although it is impossible to have perfect

localized states, we may have quasi-localized states characterized by almost zero eigenvalues

of F. Through extensive numerical studies, Rusek et al. [12–14] was able to demonstrate that

the density of eigenvalues of GGG cluster near negative one for sufficiently large dipole densities.

In other words, if we denote the eigenvalues of GGG by g, then Re(g) ≈ −1 for almost any

random distribution of dipoles with sufficiently large density. Of course, the eigenvalues of

GGG are related to the eigenvalues of F by

f = 1− e2iα − 1

2
g, (6.35)

where f denotes the eigenvalues of F, and from (6.35) we see that α may always be chosen

such that f ≈ 0 for Re(g) ≈ −1. The choice for α is dictated by the imaginary part of g. For

example, if Im(g) = 0 or − 1, then we may choose α = π/2 or π/4, respectively, to obtain

f ≈ 0 (quasi-localized state). Furthermore, Rusek et al. numerically demonstrated that if the

number of dipoles is increased while keeping their density constant, the eigenvalue density of

GGG approaches the Re(g) = −1 boundary fastest along the Im(g) = 0 line (resonating dipole

line). It is interesting to note that very little is known about the distribution of eigenvalues

of non-Hermitian random matrices such as GGG [15]. In fact, papers devoted to this study only

recently started to appear in the literature [16–19].

Returning to the original cluster of core cylinders with finite radii, we see that (6.19)

is analogous to (6.33). More specifically, the role of F in (6.33) is analogous to the role

of TTT −1 = TTT−1 − OOO in (6.33); recall that TTT−1 is a diagonal matrix that depends only on
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the properties of the core cylinders and the OOO matrix depends only on the relative position

of the core cylinders. To the best of our knowledge, there is no formula connecting the

eigenvalues of TTT−1 − OOO to the eigenvalues of TTT−1 and OOO. However, the discussion in the

previous paragraph suggests that quasi-localization is most likely to occur when the core

cylinders are near resonance. Therefore, with a fixed “resonant” TTT−1, we can study whether

there is, indeed, a signature of quasi-localization in the spectrum of OOO. It is important to

stress that our model allows us to do this numerically and experimentally, unlike the above

mentioned Foldy-based model.

6.4 Summary

In this chapter, we have generalized the SCV approximation to the case where the host

cylinder contains N eccentrically embedded core cylinders. This was accomplished via the

cluster T -matrix approach. We demonstrated that the SCV approximation retains its physi-

cal interpretation, as was previously discussed in Section 5.6. Furthermore, we have discussed

how our model can be used to study localization, and suggested some avenues for future re-

search.
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Overview: Multiple scattering effects

Develop experimentally verifiable models

I Theoretically sound

I Computationally tractable

I AB Millimetre millimeter/sub-millimeter Vector Network Analyzer

Localization

0 20 40 60 80

x (mm)

0

5

10

15

20

E
n

er
gy

D
en

si
ty

170 Teflon & Quartz Layers @ 124.3 GHz

Alex J. Yuffa ayuffa@gmail.com (MPL) Modern Electromagnetic Scattering August 20, 2013 3 / 23

Overview: Localization

Weak localization: Coherent backscattering

Time-reversed paths

Configurational Average
I Time-reversed paths survive: Factor of 2

Strong localization: Anderson localization

Coherent forward scattering

Scaling theory

I T ∼ exp

(
− sys. size

loc. length

)

Ioffe–Regel criterion
I two/three scatterers per wavelength

Alex J. Yuffa ayuffa@gmail.com (MPL) Modern Electromagnetic Scattering August 20, 2013 4 / 23
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What can we measure?

Alex J. Yuffa ayuffa@gmail.com (MPL) Modern Electromagnetic Scattering August 20, 2013 5 / 23

Graf’s addition theorems

Ψ̂n(kr) = Jn(kr)einθ

I Ψ̂m(kr) =
∑

n

Ψ̂n(kρρρ)Ônm(r0)

Ψn(kr) = Hn(kr)einθ

I Ψm(kρρρ) =
∑

n

Ψn(kr)Ônm(−r0), r > r0

Ônm(r0) = Ψ̂m−n(kr0)

Regular wavefunction: Ψ̂

Outgoing wavefunction: Ψ

Mode-mixing

Alex J. Yuffa ayuffa@gmail.com (MPL) Modern Electromagnetic Scattering August 20, 2013 6 / 23
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Scattering by a small core cylinder inside of a host cylinder

U (1)(r) = U(1)(r)︸ ︷︷ ︸
host cyl.

+V (sca)(r)

U (2)(r;ρρρ) = U(2)(r)︸ ︷︷ ︸
host cyl.

+V (2)(r;ρρρ)

U (3)(ρρρ) = V (3)(ρρρ)

Alex J. Yuffa ayuffa@gmail.com (MPL) Modern Electromagnetic Scattering August 20, 2013 7 / 23

Host cylinder

U(inc)(r) =
∑

m

DmΨ̂m(r)

U(sca)(r) =
∑

m

AmΨm(r)

U(2)(r) =
∑

m

BmΨ̂m(r)

Continuity conditions on r = a

I U(1) = U(2) and ∂
∂rU

(1) = ∂
∂rU

(2)

Am = − {Jm+1(k1a); Jm(k2a)}
{Hm+1(k1a); Jm(k2a)}Dm

Bm =
−2i

πk1a {Hm+1(k1a); Jm(k2a)}Dm

Curly bracket notation

{fm+1(u); gm(v)} ≡ fm+1(u)gm(v)− v

u
fm(u)gm+1(v)

Alex J. Yuffa ayuffa@gmail.com (MPL) Modern Electromagnetic Scattering August 20, 2013 8 / 23
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Composite cylinder

V (sca)(r) =
∑

m

AmΨm(k1r)

V (2)(r;ρρρ) =
∑

m

(
BmΨ̂m(k2r) + CmΨm(k2ρρρ)

)

V (3)(ρρρ) =
∑

m

DmΨ̂m(k3ρρρ)

Continuity conditions on r = a & on ρ = b

I Graf’s addition theorems∑

n

(δmn − Fmn)An = Gm

DmFmn =
πk1a

2i
Bm

(∑

p

Ômp(−r0)∆pÔpn(r0)

)
{Hn+1(k1a);Hn(k2a)}

DmGm =
∑

n

Bm

(∑

p

Ômp(−r0)∆pÔpn(r0)

)
Bn

Alex J. Yuffa ayuffa@gmail.com (MPL) Modern Electromagnetic Scattering August 20, 2013 9 / 23

Composite cylinder cont’d

Core cylinder’s contribution is small & contained in

∆p = − {Jp+1(k3b); Jp(k2b)}
{Jp+1(k3b);Hp(k2b)}

.

If the spectral radius of F is < 1

I A = (I− F)
−1

G =

∞∑

`=0

F`G

Teflon host cylinder
I Radius 10 cm, k2a ≈ 300
I Permittivity 2.1 at 100 GHz

Quartz core cylinder
I Permittivity 3.8 at 100 GHz
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Physical interpretation of the SCV approximation

SCV (orders-of-scattering) approximation: ` = 0

Am ∼= Gm =
∑

n,p

BmÔmp(−r0)∆pÔpn(r0)Bn

Physical interpretation

I Ôpn(r0)Bn is the “screening” effect of the host cylinder on U(inc)

I BmÔmp(−r0) is the “screening” effect of the host cylinder on V (sca)

Concentric cylinders: r0 = 0

I Ômp = δmp and Ôpn = δpn

I Am = Bm∆mBm

Alex J. Yuffa ayuffa@gmail.com (MPL) Modern Electromagnetic Scattering August 20, 2013 11 / 23

Relative error in energy
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Host cylinder: Morphological-dependent resonances

Host cylinder � wavelength
I Ray theory

Caustic radius
I Ray’s angular momentum: |k2,θ|r~
I mth eigenmode angular momentum: |m|~
I k2,r(r = rcaustic) = 0

rcaustic =

∣∣∣∣
m

k2

∣∣∣∣

Bound on m
I Ray’s angular momentum: |k2|a sin γ
I Total internal reflection:

√
ε1/ε2 ≤ sin γ ≤ 1

|k1|a ≤ m ≤ |k2|a

SCV approximation: r0 < rcaustic

I rcaustic ≥ |k1/k2| a ≈ 0.7a
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Host cylinder resonance: Energy density

Eigenmode

I m = 228

I 99.82385859 . . . GHz

Caustic radius

I rcaustic =
228

k2
≈ 7.5
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Host cylinder resonance: Spectral radius
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Scattering by a cluster of eccentrically embedded cores

U (N+2)(r) = U(N+2)(r)︸ ︷︷ ︸
host cyl.

+V (sca)(r)

U (N+1)(r) = U(N+1)(r)︸ ︷︷ ︸
host cyl.

+V (N+1)(r)︸ ︷︷ ︸
rmax≤r<a
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N core cluster

V (sca)(r) =
∑

m

AmΨm(kN+2r)

V (N+1)(r) =
∑

m

[
BmΨ̂m(kN+1r) + CmΨm(kN+1r)

]

Physical interpretation

I Cluster’s incident field

U(N+1)(r) +
∑

m

BmΨ̂m(kN+1r)

I Cluster’s scattered field ∑

m

CmΨm(kN+1r)

Cluster T -matrix

I Incident and scattered coefficients must be linearly related

Cm =
∑

n

Tmn (Bn +Bn)
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N core cluster cont’d

Continuity conditions on r = a

Definition of the cluster T -matrix

∑

n

(δmn − Fmn)An = Gm

DmGm =
∑

n

BmTmnBn

DmFmn =
πkN+2a

2i
BmTmn {Hn+1(kN+2a);Hn(kN+1a)}

Same linear system as before

(∑

p

Ômp(−r0)∆pÔpn(r0)

)
→ Tmn

I Tmn is unknown
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Cluster T -matrix: ith core cylinder

Scattered field by the ith core cylinder
∑

m

C(i)
m Ψ(kN+1ρi)

Effective incident field

“external” incident field︷ ︸︸ ︷∑

m

(Bm +Bm) Ψ̂m(kN+1r) +

scattered by all other core cyl.︷ ︸︸ ︷
N∑

j=1
j 6=i

∑

m

C(j)
m Ψ(kN+1ρj)

T -matrix: ith core cylinder

C
(i)
` =

∑

p

T
(i)
`p


B

(i)
p +B(i)

p +

N∑

j=1
j 6=i

∑

m

O(i,j)
pm C(j)

m


 , i = 1, . . . , N

T (i)
nm = − {Jn+1(kN+1bi); Jm(kibi)}

{Hn+1(kN+1bi); Jm(kibi)}
δnm, O(i,j)

pm = Ψm−p(kN+1(rj−ri))
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Cluster T -matrix: Block matrices

CCC =

≡TTT︷ ︸︸ ︷[
TTT−1 −OOO

]−1
BBB , CCC =




C(1)

C(2)

...

C(N−1)

C(N)



, BBB =




BBB(1) + B(1)

BBB(2) + B(2)

...

BBB(N−1) + B(N−1)

BBB(N) + B(N)




TTT =




T(1) 0 · · · 0 0

0 T(2) · · · 0 0

0 0
. . . 0 0

0 0 · · · T(N−1) 0

0 0 · · · 0 T(N)




OOO =




0 O(1,2) · · · O(1,N−1) O(1,N)

O(2,1) 0 O(2,3) · · · O(2,N)

· · · · · · · · · · · · · · ·
O(N−1,1) O(N−1,2) · · · 0 O(N−1,N)

O(N,1) O(N,2) · · · O(N,N−1) 0



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Cluster T -matrix: Block matrices cont’d

Global coordinate system: ρρρi to r

T =
N∑

i=1

N∑

j=1

ÔOO(i)(−ri)TTT (i,j) ÔOO(j)(rj)

I TTT (i,j) block matrices

TTT =




TTT (1,1) TTT (1,2) · · · TTT (1,N)

TTT (2,1) TTT (2,2) · · · TTT (2,N)

...
...

...
...

TTT (N,1) TTT (N,2) · · · TTT (N,N)




Compare T to one eccentrically embedded core cylinder
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Random matrices connection

Foldy’s method: Isotropic point scatterers

I Assume dipole moment: pi = %iU
(eff)(ri)

I Conservation of energy: ik2N+1%i = 2 exp(2iαi)− 2
[
I− e2iα − 1

2
GGG
]

︸ ︷︷ ︸
≡F

U(eff) = U(inc); Gij =

{
H0(kN+1|ri − rj |) if i 6= j

0 if i = j

Quasi-localized state: Eigenvalues of F ≈ 0

I Real part of eigenvalues of GGG ≈ −1

I Choose α: Resonating dipole

Rusek et al. PRE 51, 1995
Rusek et al. PRE 56, 1997
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Outlook and Summary

Outlook

Role of F: TTT−1 −OOO
I Non-Hermitian
I TTT−1 diagonal but

[
TTT−1,OOO

]
6=
[
OOO,TTT−1

]

Role of GGG: OOO

Eigenvalues of random matrices
I Localization signature in the spectrum

Summary

Produced 3 + 1 publications

Created start-of-the-art open-source E&M software

Analyzed interplay between absorption and causality

Developed experimentally verifiable model to study localization

Thank you!
Questions/Comments?
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